• 제목/요약/키워드: applied load

검색결과 6,416건 처리시간 0.041초

BASINS-SWAT 모델을 이용한 경안천 유역의 비점원 오염배출 중점관리 대상지역 결정 (Decision of Critical Area Due to NPS Pollutant Loadings from Kyongan Stream Watershed using BASINS-SWAT)

  • 장재호;윤춘경;정광욱;손영권
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.69-78
    • /
    • 2009
  • In order to improve water quality of upper watershed of Paldang reservoir, it is necessary to evaluate non-point source pollution loads and identify critical watershed pollution sources. A GIS based Soil and Water Assessment Tool was applied to evaluate model application and reliability, estimate NPS pollution load, identify critical watershed by NPS pollution sources, and suggest various best management practices for Kyongan Stream watershed. Yearly NPS pollution loads were estimated 30.0% SS, 60.1% TN and 35.4% TP, respectably. The watershed pollution load is mainly decided by precipitation condition and SS and nutrients load have a significant regression relationship. Based on 10-year average yearly NPS pollution load, critical sub-watersheds were identified. The No. 5 and 17 which have lots of relatively intensive agricultural fields and scattered industrial area were vary critical sub-watersheds and under more intensive pollution load. In order to control critical watershed, watershed best management practices such as scientific fertilizer, contour farming and parallel terrace, transferring the sloppy farmland to grass or forest and constructing a buffer zone, and constructing wetlands and retention ponds will be applied. Overall the SWAT model can be efficiently used for identification of critical sub-watersheds in order to develop a priority watershed management plan to reduce water pollutions.

강거더 교량의 신뢰성해석을 위한 저항모델 개발 (Resistance Model for Reliability Analysis of Existing Steel Girder Bridges)

  • 엄준식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권4호
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Structural response relationship between scaled and prototype concrete load bearing systems using similarity requirements

  • Altunisik, Ahmet C.;Kalkan, Ebru;Basaga, Hasan B.
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.385-397
    • /
    • 2018
  • This study is focused on the investigation for similitude the requirements between prototype and scaled models to determine the structural behavior of concrete load bearing systems. The scaling concept has been utilized in many engineering branches, has been assisted to engineers and scientists for obtain the behavior of the prototype by using scaled model. The scaling can be done for two purposes, either scaling up or scaling down depending upon the application. Because, scaled down models are the experimentation on scaled models is cheaper than huge structures. These models also provide facilities for experimental work. Similarity relationships between systems are created either by field equations of the system or by dimensional analysis. Within this study, similarity relationships were obtained by both methods. The similarity relations obtained are applied to different load bearing systems and it is determined that the similarity relation is a general expression. In this study, as an example, column, frame, cantilever beam and simple beam are chosen and 1/2, 1/5 and 1/10 scales are applied. The results are compared with the analytical results which are obtained by creating of the finite element models with SAP2000 software of different scaled load bearing systems. The analysis results of all systems are examined and it is determined that the scale factors are constant depending on the scale types for different load bearing systems.

Structural behavior of slender circular steel-concrete composite columns under various means of load application

  • Johansson, Mathias;Gylltoft, Kent
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.393-410
    • /
    • 2001
  • In an experimental and analytical study on the structural behavior of slender circular steel-concrete composite columns, eleven specimens were tested to investigate the effects of three ways to apply a load to a column. The load was applied eccentrically to the concrete section, to the steel section or to the entire section. Three-dimensional nonlinear finite element models were established and verified with the experimental results. The analytical models were also used to study how the behavior of the column was influenced by the bond strength between the steel tube and the concrete core and the by confinement of the concrete core offered by the steel tube. The results obtained from the tests and the finite element analyses showed that the behavior of the column was greatly influenced by the method used to apply a load to the column section. When relying on just the natural bond, full composite action was achieved only when the load was applied to the entire section of the column. Furthermore, because of the slenderness effects the columns did not exhibit the beneficial effects of composite behavior in terms of increased concrete strength due to the confinement.

Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.243-253
    • /
    • 2018
  • In recent years, concrete-filled box or tubular columns have been commonly used in high-rise buildings. However, a number of fire test results show that there are significant differences between high strength concrete (HSC) and normal strength concrete (NSC) after being subjected to high temperatures. Therefore, this paper presents an investigation on the fire resistance of HSC filled steel tubular columns (CFTCs) under combined temperature and loading. Two groups of full-size specimens were fabricated to consider the effect of type of concrete infilling (plain and reinforced) and the load level on the fire resistance of CFTCs. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The results demonstrate that the higher the axial load level, the worse the fire resistance. Moreover, in the bar-reinforced concrete-filled steel tubular columns, the presence of rebars not only decreased the spread of cracks and the sudden loss of strength, but also contributed to the load-carrying capacity of the concrete core.

물류창고 불출자 로드밸런스율 증대 휴리스틱 알고리즘 개발 (A Study on the Heuristic Algorithm Development for Load Balance Ratio Increase of Workers in Warehouse)

  • 전욱;장정환;장청윤;조용철;이창호
    • 대한안전경영과학회지
    • /
    • 제19권1호
    • /
    • pp.203-210
    • /
    • 2017
  • Companies are pursuing the management of small quantity batch production or JIT(Just-in-time) system for improving the delivery response and LOB(Line Balancing) in order to satisfy consumers' increasing demands in the current global economic recession. And in order to improve the growth of production for reducing manufacturing cost, improvements of the Load Balancing have become an important reformation factor. Thus this paper is aimed at warehouse which procures materials on the assembly line in procurement logistics of automotive logistics and proceed with research on heuristic algorithm development which can increase the Load Balancing of workers. As a result of this study, when applied the primary target value, it was verified that the whole workers decreased from 28 to 24. Furthermore, when specified the secondary target value and applied algorithm once more, it was verified that the Load Balance Ratio was improved from 44.96% to 91.7%.

덕트 내 음원 특성 측정을 위한 다중부하법의 부하 선택에 관한 연구 (On the selection of loads in the multi-load method for measuring in-duct source characteristics)

  • 장승호;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.384-388
    • /
    • 2000
  • One-port acoustic characteristics of an in-duct source can be measured by the multi-load method using an overdetermined set of open pipes with different lengths as applied loads. The input data. viz. load pressure and load impedance, are usually contaminated by measurement error in the actual measurements, which result in errors in the calculated source parameters. In this paper, the effects of the errors in the input data on the results have been studied numerically, varying the number of loads and their impedances in order to determine what combination of the loads will yield the best result. An error analysis is applied to each case of possible loads, which consist of open pipes. It is noted that, frequently, only a set of open pipes is used when applying the multi-load method to the intake or exhaust sides of internal combustion engines. A set of pipe lengths which cause the calculated results to be least sensitive to the input data error can be found when using open pipe loads. The present work is intended to produce guidelines for preparing an appropriate load set in order to obtain accurate source properties of fluid machines.

  • PDF

자기보상형 유정압저어널베어링의 기본특성 (Basic Characteristics of a Self-Compensated Hydrostatic Journal Bearing)

  • 박천홍;이영준;홍성욱;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.227-230
    • /
    • 2004
  • A self-compensated water-hydrostatic bearing has advantages in bearing stiffness. In this paper, the mechanism is applied to hydrostatic journal bearing for achieving the high bearing stiffness. The finite element method is applied to analyze the load characteristics of the self-compensated journal bearing. From the analyzed results, it is confirmed that though the self-compensated journal bearing has higher load capacity and stiffness than conventional fixed capillary journal bearing, the merit is decreased in the case of high eccentricity, that is, a spindle system with self-compensated journal bearing must be designed to have the load capacity large enough. For improving the practicality, a rectangular type capillary is introduced and discussed. Theoretically analyzed results show that it has more advantages than the conventional annular type capillary in the practical usage. The experimental verification on the analysis method is performed, and the experimental results show good agreement with theoretical results.

  • PDF

하중기준 변화에 따른 노후공동주택의 내진성능 향상 기법에 대한 고찰 (A Study of Improving Method of Seismic-Resisting Capacity of Deteriorated Apartment Houses according to Load Change)

  • 정미영;이수진;박경헌;박지영;김상연;윤영호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.821-826
    • /
    • 2001
  • In 2000, Standard Design Loads for Building was changed especially in seismic load. According to the change, seismic-resisting capacity of deteriorated apartment houses has to be reestimated. This research is to propose seismic-strengthening and improving methods of structural efficiency of RC deteriorated apartment houses. The analysis models were shear-wall system(36/58/79$m^{2}$) and beam-column system(11/19/25py) which were constructed in early 1980 and didn't consider seismic load. The definite methods are addition of shear walls and lightening of load. The story-drifts of shear wall systems exceed allowable story-drifts so that two methods was applied. The story-drifts of beam-columns system satisfy allowable story-drifts, thus the latter is applied. The seismic-resisting capacity of these systems was improved by the two methods. This research will be helpful to remodel deteriorated apartment houses.

  • PDF

Synchro-Phasor 데이터를 이용한 수도권 전압 안정화 제어 스킴 개발에 관한 연구 (Study on the Development of Load Shedding Scheme for Improving Voltage Stability of Seoul Metropolitan Area using Synchro-phasor Data)

  • 신정훈;남수철;백승묵;이재걸;문승필;김태균
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1530-1539
    • /
    • 2010
  • Recent technology advancement related to computer & communication and measuring devices allows system operators to adopt more intelligent monitoring and control systems to their power systems in order to prevent massive system blackout. Among them, wide-area monitoring and control(WAMAC) system based on synchro-phasor technology has been widely applied to power systems for their own purposes. In this paper, the study on the development of load shedding scheme to improve voltage stability in KEPCO system is introduced. Summary of WAMAC technology being developed and applied in the world through extensive literature survey is proposed. And methodology to develop voltage stability index and multi-step load shedding scheme based on synchro-phasor data is also presented.