• Title/Summary/Keyword: applied element method

Search Result 3,664, Processing Time 0.024 seconds

A Proposal of an Analytical Method for Estimating the Opening Behaviour of Tip-Closed Crack in Compressive Residual Stress by Finite Element Method (압축잔류응력에 의하여 선단부가 닫힌 균열의 개구거동에 대한 유한요소법에 의한 해석방법의 제안)

  • 김응준;박응준;유승현
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.71-76
    • /
    • 2003
  • For the purpose of clarifying the influence of welding residual stress to the fatigue crack propagations behaviour, an analytical investigation based on finite element method is performed to examine the opening behaviour of tip-closed crack in the compressive residual stress. A finite element model comprised of contact elements for the crack plane and plane stress elements for the base material is used to evaluate crack opening stress of the crack existing in the residual stress field. Also an analytical method based on the superposition principle to estimate the length of opened part of tip closed crack and the stress distribution adjacent to the crack during uploading is applied to the finite element model. The software for the analysis is ABAQUS, which is a general purpose finite element package. The results show that stresses distributed on the crack surfaces are reduced and approached to zero as the applied stresses are increased up to crack tip opening stress and no mechanical discontinuity is found at the boundary of contact elements and plane stress elements. It is verified that the opening behavior of the fatigue crack in the residual stress can be predicted by finite element method with the proposed analytical method.

Collapse Modeling of model RC Structure Using Applied Element Method (AEM을 이용한 철근콘크리트 모형 구조물의 붕괴 모델링)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • In order to analyze collapse behavior of structure containing irregular and large displacement, many numerical analyses have been conducted. In this study, using a new method, Applied Element Method (AEM) for collapse analysis of structures, collapse behavior of model RC structures Is simulated. From these simulations results, displacement of X-direction (or horizontal) and displacement of Y-direction (or vertical) is similar to that of mode) RC structures. It is confirmed that collapse behavior of structures using AEN is reliable accurately simulated with that of model RC structures.

The extended finite element method applied to crack problems (균열문제에 적용된 확장유한요소법)

  • 지광습
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.395-402
    • /
    • 2004
  • The extended finite element scheme applied to crack problems is reviewed in this paper. As the enrichments of the solution space and the basic formulation are discussed, several examples of the application of the method are given. The examples include a LEFM crack, a cohesive crack, multiple LEFH cracks and dynamic crack propagation problems. It is shown that the extended finite element method is one of the powerful tools to study crack problems.

  • PDF

QUADRATURE ERROR OF THE LOAD VECTOR IN THE FINITE ELEMENT METHOD

  • Kim, Chang-Geun
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.735-748
    • /
    • 1998
  • We analyze the error in the p version of the of the finite element method when the effect of the quadrature error is taken in the load vector. We briefly study some results on the $H^{1}$ norm error and present some new results for the error in the $L^{2}$ norm. We inves-tigate the quadrature error due to the numerical integration of the right hand side We present theoretical and computational examples showing the sharpness of our results.

ON THE APPLICATION OF MIXED FINITE ELEMENT METHOD FOR A STRONGLY NONLINEAR SECOND-ORDER HYPERBOLIC EQUATION

  • Jiang, Ziwen;Chen, Huanzhen
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.1
    • /
    • pp.23-40
    • /
    • 1998
  • Mixed finite element method is developed to approxi-mate the solution of the initial-boundary value problem for a strongly nonlinear second-order hyperbolic equation in divergence form. Exis-tence and uniqueness of the approximation are proved and optimal-order $L\infty$-in-time $L^2$-in-space a priori error estimates are derived for both the scalar and vector functions approximated by the method.

A MIXED FINITE ELEMENT METHOD FOR NAVIER-STOKES EQUATIONS

  • Elakkad, Abdeslam;Elkhalfi, Ahmed;Guessous, Najib
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1331-1345
    • /
    • 2010
  • This paper describes a numerical solution of Navier-Stokes equations. It includes algorithms for discretization by finite element methods and a posteriori error estimation of the computed solutions. In order to evaluate the performance of the method, the numerical results are compared with some previously published works or with others coming from commercial code like ADINA system.

The evaluation of applicability of spectral element method for the dynamic analysis of the spatial structures (대공간 구조 시스템의 동적 해석을 위한 스펙트럴 요소법의 적용성 평가)

  • Han, Sang-Eul;Lee, Sang-Ju;Cho, Jun-Yeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.789-794
    • /
    • 2007
  • Recently, the necessity of efficient and exact method to analyze structures is increasing with the importance of the seismic analysis. But the finite element method used in many field do not give the exact solution unless the length of the element is very short enough to represent the deformation of the element. Because the amount of computer calculation increase with the increasing of the number of degree of freedoms, the finite element method for the exact dynamic analysis of structures would not be efficient. To solve these problems, spectral clement method combined spectral method using the principle of wave mechanics and finite element method for the analysis of discrete models is applied to evaluate the behavior of the spatial structures. As a result of analysis. it becomes clear that the spectral element method is faster and more exact than the finite clement method.

  • PDF

Finite Element Analysis of Electromagnetic Systems Considering Hysteresis Characteristics (히스테리시스 특성을 고려한 전자계의 유한 요소 해석)

  • Kim, Hong-Gyu;Hong, Seon-Gi;Jeong, Hyeon-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.118-123
    • /
    • 1999
  • This paper describes the finite element procedure including the magnetic hysteresis phenomena. The magnetization-dependent Preisach model is employed to simulate the magnetic hysteresis and applied to each elements. Magnetization is calculated by the Fibonacci search method for the applied field in the implementation of the magnetization-dependent model. This can calculate the magnetization very accurately with small iteration numbers. The magnetic field intensity and the magnetization corresponding to the magnetic flux density obtained by the finite element analysis(FEA) are computed at the same time under the condition that these balues must satisfy the constitutive equation. In order to reduce the total calculation cost, pseudo-permeability is used for the input for the FEA. It is found that the presented method is very useful in combining the hysteresis model with the finite element method.

  • PDF

LARGE TIME-STEPPING METHOD BASED ON THE FINITE ELEMENT DISCRETIZATION FOR THE CAHN-HILLIARD EQUATION

  • Yang, Yanfang;Feng, Xinlong;He, Yinnian
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1129-1141
    • /
    • 2011
  • In this paper, a class of large time-stepping method based on the finite element discretization for the Cahn-Hilliard equation with the Neumann boundary conditions is developed. The equation is discretized by finite element method in space and semi-implicit schemes in time. For the first order fully discrete scheme, convergence property is investigated by using finite element analysis. Numerical experiment is presented, which demonstrates the effectiveness of the large time-stepping approaches.

Probability Analysis of Plane Strain Element using Boundary Element Method (경계요소법을 이용한 평면변형율요소의 확률해석)

  • Jeon, Jeong-Bae;Yoon, Seong-Soo;Park, Jin-Seon;Lee, Hyeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.39-46
    • /
    • 2012
  • The objectives of this study is intended to analyze stresses using the boundary element method and probability analysis for agricultural structure. Loads and material properties are an important factor when analyzing the structure. Until now, designing structure, loads and material properties are applied deterministic value. However, load and material properties involve uncertainties due to those change probabilistic and deterministic methods could not consider uncertainties. To solve these problems, the reliability analysis based on probability properties scheme was developed. Reliability analysis is easy to approach to analysis frame structure, however it has limitation when solving plane stress strain problems a kind of agricultural structures. The BEM (Boundary Element Method) is able to analysis plane strain problems by boundary conditions. Thus, this study applied boundary element method to analysis plane strain problem, load and material properties as a probabilistic value to calculate the analytical model using Monte Carlo simulations were developed.