• Title/Summary/Keyword: application ratio

Search Result 4,484, Processing Time 0.032 seconds

Development of Contents for the Activities of Daily Living Training for Life Care - Korean Version (라이프케어를 위한 한국형 일상생활활동훈련치료 콘텐츠 개발)

  • Lee, Chun-Yeop;Park, Young-Ju
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.7
    • /
    • pp.529-538
    • /
    • 2020
  • This study aims to develop of contents for the activities of daily living training - Korean version that reflexes the domestic situation and can be applied to clinical practice. For contents development, a Delphi survey was conducted with 13 experts. In the first Delphi survey, 133 items of activities of daily living training are derived based on previous studies, and then the extracted items are asked to group of experts, and the derived items are answered for actual domestic clinical application. In the second survey, 118 items were added by excluding items with a low content validity ratio (CVR) including the results of the first survey, and adding items that can be derived from other opinions. In the 3rd survey, while presenting the 2nd Delphi survey items as they are, it provides an opportunity to change their opinions by presenting their 2nd response and the 2nd average score of other expert panels, and adding appropriateness and importance together. The data were analyzed to obtain the mean, standard deviation, interquartile range, CVR, convergence, and consensus. Finally, a total of 69 items were selected and 49 items were excluded so that 105 items for CVR 0.54 or higher, 111 items for convergence degree 0.50 or lower, and 70 items for continuity degree 0.75 or higher. Sexual activity, care of others, care of pets, and child rearing are difficult to apply socially and culturally, driving and community mobility cannot be performed within the clinical room, and home establishment and management may have different roles depending on gender, and religious spiritual activities and expression are so personal. For these reasons, these items were found to have low importance or suitability. This study can be usefully used as an indicator on the activities of daily living training - Korean version in clinic or community setting.

The Relationship between the Characteristics of Naturalized Plant and Working Type on Major Forest Restoration Sites (주요 산림복원사업지 내 귀화식물의 특성과 공종 간 영향 관계)

  • Jeon, Yongsam;Park, Joon Hyung;Kwon, Ohil;Lee, Hye Jeong;Lim, Chaeyoung
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.481-495
    • /
    • 2022
  • This study was designed to identify the actual state of naturalized plants and invasive alien species that cause disturbances to the ecosystem, plants which are introduced after forest restoration, and explore the implications resulting from the project. Onsite examination included 29 sites which have been subjected to forest restoration by the Korea Forest Service. Once these were chosen, activity took place twice a year in the spring (May-June) and in the summer (August-September) in 2020 and 2021. Areas not relevant to the project sites were excluded from this activity so that we could identify the plants that could be understood to have been introduced or brought into the site after the actual forest restoration. And the correlation was analyzed, between the naturalized flora within the project sites and the working types applied to the site through confirmation of completion of the restoration project. The naturalized plants appearing on the entire site cover a total of 109 taxa, which includes 29 families, 80 genera, 108 species and 1 subspecies, while invasive plants included 3 families, 7 genera and 8 species. The number of classifications and the naturalization rate gradually decreased over time, after the project. While there was no significant difference between the number of classification groups and the naturalization rate for naturalized plants between project sites, given the number of taxa of naturalized plants, organized by type of damage, there were relatively more naturalized plants that appeared in the severed section of the Baekdudaegan Mountain Range, as well as at quarry and facility sites. Seeding apparently results in naturalization rates as high as 15.545%, on average, based on comparisons of naturalization rates by sowing, seeding, planting, herb planting, and sod pitching channels, all of these being methods of vegetation for planting/greening of bareland and slopes within the project areas. With no seeding, it was 9.167%, higher than the average. As for other vegetation, there was no significant difference depending on application of the working type. This means that unlike the plants subjected to planting, the working type of seed planting which makes it difficult to identify whether a certain plant is a naturalized plant greatly affects the introduction of naturalized plants to the restoration sites, even when using herb planting and sod pitching to control plants and results. Therefore the study suggests that there be inspection by experts of seeds when sowing within restoration sites. The results of this study suggest good practices that will help to direct effective vegetation restoration and follow-up management.

Application of White Light Emitting Diodes to Produce Uniform Scions and Rootstocks for Grafted Fruit Vegetable Transplants (과채류 접목 시 균일한 접수와 대목 생산을 위한 백색 LED의 적용)

  • Hwang, Hyunseung;Chun, Changhoo
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.14-21
    • /
    • 2022
  • Uniform scions and rootstocks should be produced to ensure grafting success. Light quality is an important environmental factor that regulates seedling growth. The effects of warm- and cool-white light emitting diode (LED) ratios on seedling growth were investigated. Scions and rootstocks of cucumber, tomato, and watermelon were grown in a closed transplant production system using LED as the sole lighting source. The LED treatments were W1C0 (only warm-white), W1C1 (warm-white: cool-white = 1:1), W3C1 (warm-white: cool-white = 3:1), and W5C2 (warm-white: cool-white = 5:2). The seedlings grown in W1C1 had the shortest hypocotyls, and the seedlings grown in W1C0 had the longest hypocotyls among the three tested vegetables. The hypocotyls of watermelon scions, watermelon rootstocks, and tomato rootstocks were shortest in W1C1, followed by those in W3C1, W5C2, and W1C0, but there was no significant difference between W3C1 and W5C2, which remained the same as the ratio of cool-white LEDs increased. In addition, tomato scions had the first and second longest hypocotyls in W1C0 and W3C1, respectively, and the shortest hypocotyls in W5C2 and W1C1, along with W5C2 and W1C1, although the difference was not significant. The stem diameter was highest in W1C0 except for tomato seedlings and rootstocks of watermelon. The shoot fresh weight of scions and rootstocks of cucumber and watermelon and the root fresh weight of cucumber scions were lowest in W1C1. These results indicated that different ratios of LED lighting sources had a strong effect on the hypocotyl elongation of seedlings.

Evaluation of Physical Properties of Liposome Essences as Customized Cosmetic Bases and Evaluation of Satisfaction According to Skin Type (맞춤형화장품 베이스로서 리포좀 에센스의 물성 평가 및 피부타입에 따른 만족도 평가)

  • An, Hyung Guen;Hyeon, Tong-Il;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Customized cosmetics are continuously mentioned as a trend in the cosmetics industry to respond to the recent rapid changes in the social environment and pursue individuality and diversity. Accordingly, four types of liposome essence corresponding to skin types were prepared by varying the ratio of liposome formulation and essence formulation as a customized cosmetic base that can be easily mixed and applied at the workplace. The volatilization residues of four types of liposome essence were measured and the nanoparticle size, polydispersity index, zeta potential and viscosity according to time for 90 d were measured, and Turbiscan was measured as a method for evaluating the stability of a colloidal dispersion system. In addition, a simple usability evaluation was performed for four types of liposome essence corresponding to the skin type. As a result, the amount of volatile residue in the four types of liposome essence was increased in dry products rather than oily ones, and the particle size showed a tendency to increase with time in the range of 165 to 175 nm, increasing up to 31.5%, and the polydispersity index was 0.23 to 0.26. There was little change with time, and the zeta potential was -74 to -72 mV, showing a slight decrease with time, but there was little change to the extent of a maximum decrease of 14.0%. Viscosity showed a decreasing trend with time in the range of 2,580 ~ 3,290 cps, showing a maximum decrease of 17.5%. In the turbiscan measurement, all of the turbiscan stability index, a measure of stability, were less than 1.0, indicating dispersion stability. In the overall simple usability satisfaction evaluation for skin types (6 points), products for oily skin (5.33 ± 0.75 points) > products for medium dry skin (5.13 ± 0.95 points) > products for dry skin (5.03 ± 0.96 points) > products for oily skin (4.80 ± 1.04 points) points) were evaluated in order. The four types of liposome essence corresponding to skin types with different ratios of liposome formulation and essence formulation were physically stable, and the possibility of application as a customized cosmetic base according to skin type was confirmed.

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries (고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극)

  • Yun Jung Shin;Hyeon Seo Jeong;Eun Mi Kim;Tae Yun Kim;Sang Mun Jeong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.426-438
    • /
    • 2023
  • Lithium-sulfur batteries, recently attracting attention as next-generation batteries, have high energy density but are limited in application due to sulfur's insulating properties, shuttle phenomenon, and volume expansion. This study used an economical and simple vacuum filtration method to prepare a freestanding electrode without a binder and collector. Carbon nanotubes (CNTs) are used to improve the electrical conductivity of sulfur, where CNT also acts as both collector and conductor. In addition, metal oxides (MOx, M=Ni, Mg), which are easy to adsorb lithium polysulfide, are added to the CNT/S electrode to suppress the shuttle reaction in lithium-sulfur batteries, which is a result of suppressing the loss of active sulfur material due to the excellent adsorption of lithium polysulfide by metal oxides. The MOx@CNT/S electrode exhibited higher capacity characteristics and cycle stability than the CNT/S electrode without metal oxides. Among the MOx@CNT/S electrodes, the NiO@CNT/S electrode displayed a high discharge capacity of 780 mAh g-1 at 1 C and an extreme capacity decrease to 134 mAh g-1 after 200 cycles. Although the MgO@CNT/S electrode exhibited a low discharge rate of 544 mAh g-1 in the initial cycle, it showed good cycle stability with 90% of capacity retention up to 200 cycles. Further, to achieve high capacity and cycle stability, the Ni0.7Mg0.3O@CNT/S electrode, mixed with Ni:Mg in the ratio of 0.7:0.3, manifested an initial discharge rate of 755 mAh g-1 (1 C) and a capacity retention rate of more than 90% after 200 cycles. Therefore, applying binary metal oxides to CNT/S provides a freestanding electrode for developing economical and high-performance Li-S batteries, effectively improving lithium polysulfide's high capacity characteristics and dissolution.

Effects of Increasing Air Temperatures and CO2 Concentrations on Herbicide Efficacy of Acalypha australis and Phytotoxicity of Soybean Crops (대기온도와 CO2 농도 증가에 따른 우점잡초 깨풀의 제초제 약효 및 콩 약해 변화)

  • Hyo-Jin Lee;Hyun-Hwa Park;Ye-Geon Kim;Do-Jin Lee;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.121-133
    • /
    • 2023
  • The purpose of this study was to improve weed management systems under varying carbon dioxide concentrations and temperatures by evaluating the growth of Acalypha australis and observing the efficacy of four foliar and four soil herbicides, as well as measuring phytotoxicity in soybean crops treated with these herbicides. In both growth chamber and greenhouse conditions, plant height and shoot fresh weight of Acalypha australis increased as temperature increased. The variable to maximum fluorescence ratio (Fv/Fm), relative electron transport rate (ETR), plant height, leaf area, and shoot fresh weight of Acalypha australis were higher at carbon dioxide concentrations of 800 ppm than at 400 ppm. The efficacy of a foliar herbicide, glufosinate, on Acalypha australis was lower at 30℃ than at 20℃ and 25℃ in the growth chamber condition and was also lower at 29℃ than at 21℃ and 25℃ in greenhouse conditions. In contrast, mecoprop efficacy on Acalypha australis was lower at 20℃ and 25℃ than at 30℃ in growth chamber conditions and lower at 21℃ and 25℃ than at 29℃ in greenhouse conditions. Glyphosate efficacy was lower at 21℃ than at 25℃ and 29℃ under greenhouse conditions. With soil herbicides, metolachlor and ethalfluraline, efficacies were higher at relatively high temperatures under both growth chamber and greenhouse conditions. However, in the case of linuron, the difference in efficacy was not observed under varying temperatures in both growth chamber and greenhouse conditions. When ¼ of the recommended glyphosate rates were applied to Acalypha australis, efficacy was lower under 800 ppm carbon dioxide concentrations than under 400 ppm. In contrast, when ¼ of the recommended rate of bentazone was applied to Acalypha australis, efficacy was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. Despite application rates, glufosinate efficacy differed insignificantly under different carbon dioxide concentrations. When applied at ¼ of the recommended rate, the efficacy of ethalfuralin was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. However, efficacies of other herbicides were not different despite varying carbon dioxide concentrations. Soybean phytotoxicity in crops treated with the recommended rate and twice the recommended rate of soil herbicides was not significantly different regardless of temperature and carbon dioxide concentrations. Overall, weed efficacy of some herbicides decreased in response to different temperatures and carbon dioxide concentrations. Therefore, new weed management methods are required to ensure high rates of weed control in conditions affected by climate change.

Effects of 1-methylcyclopropene (1-MCP) treatment on the maintenance of fruit quality of RubyS apples during cold storage ('루비에스' 사과의 저온저장 중 과실품질 유지를 위한 1-methylcyclopropene 처리 효과)

  • Jingi Yoo;Hwajong Yoo;Nay Myo Win;Hee-Young Jung;Young-Je Cho;In-Kyu Kang
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.78-87
    • /
    • 2023
  • This study was conducted to evaluate the effect of different 1-methylcyclopropene (1-MCP) concentrations on fruit quality of small-sized RubyS apples during cold storage. After harvesting, the fruits were treated with 1-MCP at 0.5 or 1 µL/L concentrations and, subsequently, stored at 0℃ for 6 months. After 6 months, the flesh firmness of untreated fruits, which was 85.4 N at harvest, had gradually decreased to 46.5 N; however, that of 1-MCP-treated fruits was maintained at 59.1 and 59.5 N. Titratable acidity (TA) of untreated fruits had also decreased from 0.42 to 0.24%, whereas that of 1-MCP-treated fruits was maintained at 0.26 and 0.27%. Soluble solids content (SSC) did not differ in all fruits. However, the 1-MCP-treated fruits had lower levels of SSC/TA ratio than untreated fruits. Moreover, after 6 months, the ethylene production had increased to 47.0 µL/kg/h in the untreated fruits, whereas 1-MCP blocked the ethylene production at 1.4 and 1.7 µL/kg/h. The weight loss and peel color variables remained unaffected by 1-MCP treatments. Thus, these results indicated that, for RubyS apples, the storability was only 2 months at 0℃ without treatment, which can be extended to 6 months with 1-MCP treatments. The application of 1-MCP at 0.5 µL/L concentration is effectively and economically sufficient to maintain the quality of RubyS apples.

Efects of Biodegradable Mulching Films Containing Rice Powder on Sweetpotato Growth (쌀 분말이 함유된 생분해성 멀칭필름이 고구마 생육에 미치는 영향)

  • Sin Young Park;Ju Hyun Im;Eun Byul Go;Kil Ja Kim;Jae Min Park;Dong Kwan Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.123-132
    • /
    • 2024
  • In this study, two types of biodegradable film prototypes were produced using plastic resin containing rice powder. The application of these biodegradable films in sweetpotato (Ipomoea batatas L. Lam) fields and their impacts of plant growth, yield, and the soil environment were assessed, in comparison with Polyethylene (PE) film. The light transmittance of the biodegradable film containing 30% of 350 mesh rice powder (BF30-350RP) was 0.8%, which was lower than the 2.0% light transmittance of the biodegradable film containing 40% of 500 mesh rice powder (BF40-500RP) and 2.7% light transmittance of PE film. Surface temperature measurements on clear day indicated that the PE film exhibited the lowest temperature, with the minimal difference observed between BF40-500RP and BF30-350RP. Assessment of the damage ratio resulting from agricultural work revealed a ranking of 0.4% for the PE film, 3.3% for BF500-400RP, and 5.3% for BF350-30RP. Visible decomposition of BF40-500RP and BF30-350RP commenced after 40 and 30 days of outdoor exposure, reaching 62.3% and 70.4% decomposition at 90 days post-exposure, respectively. The decomposition of biodegradable films applied to sweetpotato fields progressed more slowly in BF40-500RP than in BF30-350RP. The BF40-500RP film on the surface of the ridges was decomposed by 5%, 30%, 55%, and 90% after 30, 60, 90, and 120 days after planting sweetpotato cuttings, respectively. Both types of biodegradable films at the ridge and furrow borders were completely decomposed after 75 days of sweetpotato planting. In a field where the surface was sealed by mulching without growing sweetpotatoes, the soil moisture and its deviation were lower in the order of PE film, BF40-500RP, and BF30-350RP, but the differences were not significant. The soil temperature was higher for PE film mulching than for the biodegradable films containing rice powder, but the differences were small. Two months after sweetpotato planting, the daily average soil moisture decreased by 2.5%point for BF30-350RP mulching, 1.5%point for BF40-500RP mulching, and 1.1%point for PE film mulching over seven days. Soil temperature was similar for both biodegradable film mulches, but increased steadily for the PE film mulch, reaching a daily average of 0.1℃ higher than for the biodegradable films. Sweetpotato vine growth and tuber yield were similar for all the mulching films tested.