• Title/Summary/Keyword: applicability domain

Search Result 220, Processing Time 0.022 seconds

Application of Time Domain Reflectometry to Estimate Curing Process of Cementitious Grout (시계열반사계를 이용한 시멘트계열 지반보강재의 양생과정 평가)

  • Jun, Minu;Cho, Hyunmuk;Lee, Eun Sang;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.85-91
    • /
    • 2024
  • To realize stable use of ground treated with cementitious materials, the curing process must be evaluated. In this study, a time domain reflectometry (TDR) measurement system was employed to evaluate the curing process of cementitious grout based on the electromagnetic property. A coated probe was manufactured to prevent electrical connection between the electrodes by the electrically conductive cementitious grout, and a calibration process was performed to estimate the actual relative permittivity using the coated probe. To assess the curing process of cementitious grout using the TDR measurement system, cementitious grout with added retarder was prepared with a water-to-cement ratio of 45%. A preliminary measurement was conducted immediately after pouring the cementitious grout into the mold to test the applicability of the coated probe, and TDR signals and relative permittivity were measured at 3~288 hours of curing time. The experimental results demonstrate that the relative permittivity of the cementitious grout immediately after pouring was greater than 100, decreased rapidly over time, and converged to approximately 13.8 at 144 hours, which is considered the fully cured time. This findings of this study demonstrate that the TDR measurement system with a coated probe is applicable to electrically conductive materials. In addition, the TDR measurement system can be used effectively to monitor the curing process of cementitious grout based on electromagnetic properties.

A Service Reusability-Centric Process for Developing Software-as-a-Service (서비스 재사용성 중심의 Software-as-a-Service 개발 프로세스)

  • Lee, Jung-Woo;La, Hyun-Jung;Kim, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.518-535
    • /
    • 2010
  • Cloud Computing is emerged as an effective reuse paradigm, where service providers operate hardware and software and as a service, and service consumers invoke the service through Internet. Software-as-a-Service (SaaS) is a type of cloud services, where the whole software is designed as a service so that several consumers can reuse the SaaS. While tradition software applications are developed for a specific organization, SaaS is developed for multiple users in the various organizations. Hence, reusability is very essential characteristic of SaaS. Reusability is defined as a metric of how effective and efficient software functionalities can be used by various users. Reusability in SaaS is evaluated by considering three sub-characteristics; applicability, adaptability, and scalability. Since such a SaaS has considerable differences and characteristics from traditional software applications, conventional methods including object-oriented modeling, component-based development method, and service-oriented architecture (SOA) service development method would be limited in developing services which can fulfill these three sub-characteristics related to reusability as well as SaaS-intrinsic characteristics. Hence, there is a great demand for effective processes for developing SaaS cloud services. In this paper, we present a practical process for developing SaaS, which focuses on ensuring reusability. And by performing a case study with our proposed SaaS development process, we evaluate applicability of our proposed process and explain how the process is used in a real domain. Then, we compare our proposed process with others for verifying our study. Through the proposed process, cloud services with high quality can be more effectively developed.

The Effects of an Instruction Using Geologic Planar Figures on High School Students' Ability of Spatial Visualization and Geologic Spatial Ability (지질 전개도를 활용한 수업이 고등학생의 공간 시각화 능력과 지질 공간 능력에 미치는 영향)

  • Park, Jaeyong;Lee, Kiyoung
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.280-299
    • /
    • 2015
  • The purpose of this study was to investigate the effects of an instruction using geologic planar figures on high school students' ability of spatial visualization and geologic spatial ability and also to explore its applicability as an instructional strategy through the investigation of students' perception about the instruction using mixed methodology. For this purpose, we developed 10 planar figures of geologic structures (2 horizontal layers, 2 vertical layers, 4 angular layers, 1 fault, and 1 fold), and tested students' spatial visualization ability and geologic spatial ability before and after the implementation in class. In addition, in order to investigate students' perception on the instruction, we conducted quantitative research using questionnaires comprised of the cognitive and the affective domain, and followed by focus group interview that was conducted to obtain deeper understanding of their perception. Findings revealed that the instruction using geologic planar figures was effective to enhance spatial visualization ability and geologic spatial ability. It was also helpful for students to enhance their ability to perceive the spatial configuration of the geologic structures as well as the ability to penetrate visually into the images of the structures. The results of the students' perception on the instruction showed that the students recognized the instruction using geologic planar figures as a strongly positive teaching method both in the cognitive and affective domain. We concluded that geologic planar figures could be used as an effective tool for the lesson of 'mapping and interpreting of geological map', and be highly applicable for the advanced class in high schools.

Development of a Numerical Model of Shallow-Water Flow using Cut-cell System (분할격자체계를 이용한 천수흐름 수치모형의 개발)

  • Kim, Hyung-Jun;Lee, Seung-Oh;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.91-100
    • /
    • 2008
  • Numerical implementation with a Cartesian cut-cell method is conducted in this study. A Cartesian cut-cell method is an easy and efficient mesh generation methodology for complex geometries. In this method, a background Cartesian grid is employed for most of computational domain and a cut-cell grid is applied for the peculiar grids where the flow characteristics are changed such as solid boundary to enhance the accuracy, applicability and efficiency. Accurate representation of complex geometries can be obtained by using the cut-cell method. The cut-cell grids are constructed with irregular meshes which have various shape and size. Therefore, the finite volume method is applied to numerical discretization on a irregular domain. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. The weighted average flux method applied on the Cartesian cut cell grid for stabilization of the numerical results. To validate the numerical model using the Cartesian cut-cell grids, the model is applied to the rectangular tank problem of which the exact solutions exist. As a comparison of numerical results with the analytical solutions, the numerical scheme well represents flow characteristics such as free surface elevation and velocities in x-and y-directions in a rectangular tank with the Cartesian and cut-cell grids.

A Numerical Study on the Strain Based Monitoring Method for Lateral Structural Response of Buildings using FBG Sensors (FBG를 이용한 변형률 기반 건물의 횡방향 구조반응 모니터링 기법에 관한 해석적 연구)

  • Choi, Se Woon;Park, Keunhyoung;Kim, Yousok;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2013
  • In this study, the strain based monitoring method to evaluate the lateral structural response of buildings is presented and an applicability of the proposed method is confirmed through the numerical study. It is assumed that the fiber Bragg grating(FBG) strain sensor is employed to measure the strain response of members due to the excellent properties such as multiplexing, and higher sampling frequency. These properties of FBG sensors is proper for buildings the a lot of sensors are required to monitor the reponses of those. FBG sensors measure the strain response of vertical members and are employed to calculate the curvatures of members using the measured strain responses. Then the lateral displacement, and lateral acceleration is evaluated based on the curvatures of vertical members. Additionally, these dynamic responses of buildings are used to evaluate the dynamic properties of buildings such as the natural frequencies and mode shapes using the frequency domain decomposition(FDD) method. Through the application of nine-story steel moment frame example structure, it is confirmed that the proposed method is appropriate to evaluate the lateral structural responses and dynamic properties of buildings.

Lagrangian Finite Element Analysis of Water Impact Problem (강체-유체 충격문제에 대한 Lagrangian 유한요소 해석)

  • Bum-Sang Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.60-68
    • /
    • 1991
  • The updated Lagrangian Finite Element Method is introduced to analyse rigid body-fluid impact problem which is characterized by incompressible Navier-Stokes equations and impact-contact conditions between free surface and rigid body. For the convenience of numerical computation, velocity fields are splinted into vicous and pressure parts, and then the governing equations and boundary conditions are decomposed in accordance with the decomposition. However, Viscous stresses acting an the solid boundaries are neglected on the assumption that very small velocity gradients may occur during extremely small time interval of the impact. Four coded quadrilateral elements are used to discretize the space domain and the fully explicit time-marching algorithm is employed with a reasonably small time step. At the beginning of each time step, contact velocity of the rigid body is computed from the momentum balance between the body and the fluid. The velocity field is then computed to satisfy the discretized equations of motions and incompressibility and contact constraints as well as an exact free surface boundary condition. At the end of each time step, the fluid domain is updated from the velocity field. In the present time stepping numerical analysis, behaviour of the free surface near the body can be observed without any difficulty which is very important in the water impact problem. The applicability of the algorithm is illustrated by a wedge type falling body problem. The numerical solutions for time-varying pressure distributions and impact loadings acting ion the surface are obtained.

  • PDF

Development of Buried Type TDR Module for Leak Detection from Buried Pipe (매설관 주변부 누수 탐지를 위한 매설형 TDR 모듈 개발)

  • Hong, Wontaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • To prevent accidents due to the cavities and loosened layers formed due to water leakage from the deteriorated buried pipes, evaluation of the changes in water contents around the buried pipes is required. As a method to evaluate the water contents of the soils, time domain reflectometry (TDR) system can be adopted. However, slender electrodes used in standard TDR probe may be damaged when buried in the ground. Thus, in this study, buried type TDR module was developed for the evaluation of the water contents with maintaining required shape of the electrodes in the ground. The TDR module is composed of three electrodes connected to the core conductor and outer conductor and a casing to prevent deformation and maintain alignment of the electrodes in the ground. For the verification of TDR waveforms measured using the TDR module, comparative analysis was conducted with the TDR waveforms measured using the standard TDR probe, and the relationship between the volumetric water content of the soils and the travel time of the guided electromagnetic wave was constructed. In addition, a model test was conducted to test the applicability of the buried type TDR module, and the experimental result shows that the TDR module clearly evaluates the changes in volumetric water contents due to the leakage from the modeled buried pipe. Therefore, the buried type TDR module may be effectively used for the health monitoring of the buried pipe and the evaluation of the water contents around the pipes buried in the urban pavements.

Evaluation of Applicability of Impulse function-based Algorithm for Modification of Ground Motion to Match Target Response Spectrum (Impulse 함수 기반 목표응답스펙트럼 맞춤형 지진파 보정 알고리즘의 적용성 평가)

  • Kim, Hyun-Kwan;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.53-63
    • /
    • 2011
  • Selection or generation of appropriate input ground motion is very important in performing a dynamic analysis. In Korea, it is a common practice to use recorded strong ground motions or artificial motions. The recorded motions show non-stationary characteristics, which is a distinct property of all earthquake motions, but have the problem of not matching the design response spectrum. The artificial motions match the design spectrum, but show stationary characteristics. This study generated ground motions that preserve the non-stationary characteristics of a real earthquake motion, but also matches the design spectrum. In the process, an impulse function-based algorithm that adjusts a given time series in time domain such that it matches the target response spectrum is used. Application of the algorithm showed that it can successfully adjust any recorded motions to match the target spectrum and also preserve the non-stationary characteristics. The modified motions are used to perform a series of nonlinear site response analyses. It is shown that the results using the adjusted motions result in more reliable estimates of ground vibration. It is thus recommended that the newly adjusted motions be used in practice instead of original recorded motions.

A Study on the Underwater Channel Model based on a High-Order Finite Difference Method using GPUs (그래픽 프로세서를 이용한 고차 유한 차분식 기반 수중채널모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Ha, Wansoo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • As unmanned underwater systems have recently emerged, a high-speed underwater channel modeling technique, which is one of the most important techniques in the system, has received a lot of attention. In this paper, we proposed a high-speed sound propagation model and verified the applicability through quantitative performance analyses. We used a high-order finite difference method (FDM) for wave propagation modeling in the water, and a domain decomposition method was adopted using multiple general-purpose graphics processing units (GPUs) to increase the calculation efficiency. We compared the results of the model we proposed with the analytic solution in the half-infinite media and results of the Virtual Timeseries Experiment (VirTEX) model, which is based on the ray method. Finally, we analyzed the performance of the model quantitatively using numerical examples. Through quantitative analyses of the improvement in computational performance, we confirmed that the computational speed increases linearly as the number of GPUs increases. The computation times are increased by 2 times and 8 times, respectively, when the domain size of computation and the maximum frequency are doubled. We expect that the proposed high-speed underwater channel modeling technique is able to contribute to the enhancement of national defense as an underwater communication channel model and analysis tool to develop the underwater communication technique for the unmanned underwater system.

Proposal for Possibility of Using Metaverse in the 'Earth and Space' Area of Pre-service Elementary Teachers' (초등예비교사의 '지구와 우주' 영역에서 메타버스 활용가능성 제안)

  • Lee, Yong-Seob
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.3
    • /
    • pp.248-256
    • /
    • 2021
  • The purpose of this study is to investigate the perception of pre-service elementary teachers on the educational approach to metaverse. Questions about metaverse were asked to 71 pre-service elementary teachers who were taking the course 'Study of Textbooks in Elementary Science II'. The results of analyzing the contents of the questions are as follows. The results and conclusions were presented through numerical analysis and static analysis based on the responses to questions presented using the university's LMS system. First, the level of understanding of the metaverse of pre-service elementary teachers is very high. Pre-service elementary teachers, as the MZ generation, are already living in a very fast IT environment that can be the basis of the metaverse, so it would have been helpful to understand the metaverse. Second, the need for the metaverse of pre-service elementary teachers is very high. There was a tendency to think that the perception of pre-service elementary teachers is because the metaverse has many factors that can provide higher quality education beyond the current educational environment. Third, in the question of applicability exploration in the 'Earth and Space' domain of Pre-service elementary teachers, there have been few cases in which instructional design was planned based on instructional design principles. Based on these results, if the possibility of metaverse application is proposed in the 'Earth and Space' domain, educational contents using virtual space that can transcend time and space will be very necessary. Based on these results, suggestions are made as follows. First, educational content incorporating the metaverse technique based on instructional design should be developed and utilized. Second, financial support should be provided so that the metaverse can be implemented in the educational environment. Third, it is necessary to provide training opportunities for teachers (including Pre-service elementary teachers) to give lectures on metaverse.