• Title/Summary/Keyword: apple pests

Search Result 40, Processing Time 0.023 seconds

Community Structure of Phytophagous Arthropods and Their Natural Enemies at Different Weed Management Systems in Apple Orchards (사과원 잡초관리 방법에 따른 사과해충 및 천적의 군집구조)

  • 김동순;이준호;전흥용;임명순;김기열
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.256-265
    • /
    • 1995
  • The effect ground-cover weeds on the occurrence of apple pests and their natural enemies was studied in an apple orchard in Ahnsung, Kyung-gi do during seasons of 1993 and 1994. The major apple pests and their parasitoids and predators were surveyed on the apple tree canopy in tow experimental plots; a weed-free lot where all weeds were removed by herbicide treatment, and a mowed plot where weeds were allowed restrictly by cutting with an asickle. Also, a sweep net sampling was taken from ground-cover weeds in the mowed plot. There were no significant differences in the abundance of mite and aphids between two plots, although mite densities tend to be lower in the mowed plot. The apple leaf miner, Phyllonorycter ringoniella, was significantly fewer in the mowed plot,. The densities of natural enemies of mites and aphids were slightly higher in the mowed plot. The parasitism of apple leaf miner in the mowed plot was 6~10% and 20~25% higher than that in the weed-free plot in 1993 and 994, respectively. Several natural enemies such as Apanteles kuwayamai (Braconidae), Orius sauteri (Anthocoridae), Chrysopa sp. (Chrysopidae), coccinellidae, and Eulophidae were collected both from weeds and the apple trees, However, potential apple pests were not observed on weeds. The development of insect community on the apple tree canopy was restricted by the pesticide spray on apple trees, while the insect community on weeds was maintained without significant destruction by pesticides spray on apple trees. Consequentely, the ground-cover weeds under apple trees affected occurrences of apple pests and their natural enemies in apple trees. te specialist natural enemies such as apple leaf miner's parasitoids dispersed from weeds to the apple canopy and affected apple leaf miner density significantly. However, generalist predators that have preys available on weeds stayed on weeds, hence their control effects for mites and aphids on the apple canopy were low.

  • PDF

Current Status on the Occurrence and Management of Disease, Insect and Mite Pests in the Non-chemical or Organic Cultured Apple Orchards in Korea (무농약 유기재배 사과원의 병해충 발생과 관리 실태)

  • Choi, Kyung-Hee;Lee, Dong-Hyuk;Song, Yang-Yik;Nam, Jong-Chul;Lee, Soon-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.2
    • /
    • pp.221-232
    • /
    • 2010
  • During 2005~2009, current status on the occurrence and the management of the major disease, insect and mite pests were investigated in the non-chemical or organic cultured apple orchards in Korea. Numbers of certified organic or non-chemical apple orchards increased from 14 in 2005 to 78 in 2008. Severe damages on leaves and fruits were caused by the several diseases such as marssonina blotch, bitter rot, white rot, sooty blotch and flyspeck, and the several insect pests such as apple leaf-curling aphid, woolly apple aphid, oriental fruit moth and peach fruit moth on the almost certified organic or non-chemical pest control orchards. About 10 and 18 environmental-friendly materials were used to control diseases and insect or mite pests, respectively. But, lime sulfur and bordeaux mixture to diseases and machine oil, plant oil mixed with egg yolk, and pheromone mating disruptions to insect pests were effective under the adequate conditions.

Presticide Resistance Menagement of Pest and Beneficial Arthropods and More Biologically-Based IPM on Apple

  • Croft, B.A.
    • Korean journal of applied entomology
    • /
    • v.32 no.4
    • /
    • pp.373-381
    • /
    • 1993
  • Resistance evolution to organophosphate-based pesticides in apple and pear inhabiting arthropods of western North America extends to many classes of pest and some beneficial species. Resistance management programs to minimize resistance in pests while exploiting it in natural enemies have met with mixed success. Among beneficials, resistances have been exploited mostly among predators of pest mites. Evolution of resistant mites, leafminers, leafhopper, aphids, leafrollers and some internal fruit feeders have led to development of new monitoring methods and means to delay or avoid resistance. But it is resistance to azinphosmethyl in codling moth (Cydia pomonella) that is changing the pest control system and moving it from chemical to biologically-based means. Newly merging IPM system will depend more on use of biological, cultural, behavior and genetic controls. But more selective pesticides also will be needed to augment pheromones, resistant host plants and genetically altered organisms. These more biologically-based tactics will be prone to resistance evolution in pests as well, if used too unilaterally and/or too extensively.

  • PDF

Current status on the occurrence and management of disease, insect and mite pests in the non-chemical or organic apple orchards (무농약 유기재배 사과원의 병해충 발생 및 관리 실태)

  • Choi, Kyung-Hee;Lee, Dong-Hyuk;Song, Yang-Yik;Nam, Jong-Chul;Lee, Soon-Won
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.45-56
    • /
    • 2009
  • Current status on the occurrence and the management of the major disease, insect and mite pests were investigated in the organic or non-chemical pest control orchards from 2005 to 2009. Numbers of certified organic or non-chemical apple orchards were increased from 14 in 2005 to 78 in 2008. Severe damages on leaves and fruits occurred by the several diseases such as marssonina blotch, bitter rot, white rot, sooty blotch and flyspeck, and the several insect pests such as apple leaf-curling aphid, woolly apple aphid, oriental fruit moth and peach fruit moth on the almost certified organic or non-chemical pest control orchards. About 10 and 18 environmental-friendly materials were used to control diseases and insect or mite pests respectively. But, lime sulfur and bordeaux mixture to diseases and machine oil, plant oil mixed with egg yolk, and pheromone mating disruptions to insect pests were effective to control under the adequate conditions. At present, it is extremely difficult to produce organic apples in Korea. Growers must consider about and solve so many conditions on the cultivar, weather, local site, marketing and so on, before when they decide to change from conventional or IPM(Integrated Pest Management) to organic or non-chemical pest control orchards.

  • PDF

Lepidopterous Insect Pests on Apple Tree (사과의 나방류(아류)해충에 관하여)

  • Park K. T.;Choe K. Y.;Paik J. C.;Han S. C.
    • Korean journal of applied entomology
    • /
    • v.16 no.1 s.30
    • /
    • pp.33-39
    • /
    • 1977
  • The Present survey was conducted to clarify species of moths infesting apple and the general biology of the dominant species as a basis for effective control. From the results of a survey in Suweon area, 24 species of leafrollers, 3 species of fruit-moths, 4 species of leaf-miners, 4 species of fruit-piercing moths and 28 other leaf-feeders were identified as pests of apple or apple trees.

  • PDF

Development of Basic Research for Establishing the Apple IPM System in Korea: Dr. Lee Soon-Won's Research Case (한국형 사과 병해충종합관리(IPM) 체계 수립을 위한 기초연구의 전개: 이순원 박사의 연구 사례)

  • Ahn, Jeong Joon;Oh, Hyeonseok;Choi, Kyung San;Choi, Kyung-Hee;Do, Yun-Su;Lee, Sun-Young;Lee, Dong-Hyuk
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • The concept of integrated pest management (IPM) first developed in the 1950s, and the concept of economic control via pest management was established in the 1960s. Research on IPM began in the United States and Europe, and IPM studies in Korea started with citrus insects and paddy field pests following the distribution of high-yield varieties of rice. Apple IPM in Korea began with research on pest control using chemical pesticides and pesticides resistant to insect pests, studies on the ecology of insect pests and their natural enemies, and the exploitation of sex pheromones on insect pests. Since the 1990s, IPM research and field projects have been carried out simultaneously for farming households. In the 2000s, the development of pest monitoring and forecasting models centered on mating disturbances, database programs for pests, and networks for sharing information. IPM technology has expanded via the development of unmanned forecasting systems and automation technologies in the 2010s.

Biological Control of Apple Pests with Entomopathogenic Nematodes, Steinernema spp. (Steinernema 속 곤충병원선충을 이용한 사과원 병해충의 생물학적 방제)

  • 유연수;박선호
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.106-111
    • /
    • 2000
  • Peach fruit month, smaller tea tortrix, and Melotontha incana are major pests of apple and apple trees throughout the country. In this work, we examined efficacies of entomopathogenic nematodes Steinernema carpocapsae and Steinernema glaseri against these apple pests. Steinernema carpocapsae showed 100% mortality after 24hr against peach fruit moth when it was applied on the larva with the concentration of 80 nematodes per larva, but Steinernema glaseri caused 83.3$\pm$5.8% mortality after 24hr at the concentration of 50 nematodes per larva. In the case of smaller tea tortrix, S. carpocapsae and S. glaseri caused 100%, 43.3$\pm$5.8% at the concentration of 50 nematodes per larva after 48 hr, respectively. However, 5~6 instar of Melotontha incana was not killed by treatments with S. carpocapsae and S.glaseri up to concentration of 200~800 nematodes per larva. The motility of nematodes in a soil increased as both inoculation concentration of nematode per larva and temperature increased. The mortality of G. mellonella by S. carpocapsae was 100% up to 10cm in depth and 56.7$\pm$5.8% at 10~15cm in depth when the temperature was $25^{\circ}C$ and 50 nematodes per larva were used.

  • PDF

Recent Occurrence Status of Two Major Fruit Moths, Oriental Fruit Moth and Peach Fruit Moth in Apple Orchards (사과 주산지 사과원에서 2종 심식나방류의 발생동향)

  • Choi, Kyung-Hee;Lee, Soon-Won;Lee, Dong-Hyuk;Kim, Dong-A;Kim, Soon-Kyung
    • Korean journal of applied entomology
    • /
    • v.47 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • This survey was conducted from 1992 to 2005 in the major apple producing districts in southern part of South Korea including $4{\sim}8$ cities, to know the occurrence and damage level of two major pests, Carposina sasakii and Grapholita molesta that attack apple fruit. The fruit damage by G. molesta during the harvest period ranged from 0.02 to 1.64%. A tendency of higher damage of G. molesta was observed after 1997 compared with the previous years. The other hand, the fruit damage by C. sasakii was 0.02 to 1.30%, and the damage level was very low with fruit damage of < 0.3% except 1998. The orchard infested with G. molesta was 13 to 71 %, while 12 to 57% with C. sasakii. The rates of orchards where fruit damage by G. molesta was found were higher than those by C. sasakii after 1997. The tendency of fruit damage rates in the orchard where the most fruit damage was found was same with the trend of orchard rates infested with the pests. The maximum damage rate by G. molesta was 20.0% in 2005, while 4.5% by C. sasakii in 1998. The damaged shoot rates by the first generation G. molesta was $0.1{\sim}8.1%$, and it had a positive correlation with the rates of fruit damage during the harvest period. Consequently, it is concluded that G. molesta is dominant species compared with C. sasakii in commercial apple orchards recently.

Induction on in vitro Plant Regeneration the Apple Rootstocks of Fire Blight Resistance by Plant Growth Regulators (생장조절제 처리에 따른 과수화상벙 저항성 사과대목의 기내 식물체 유도)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim;Yong Sup Song
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.23-23
    • /
    • 2021
  • Apple (Malus×domestica Borkh.; Rosaceae) is an important fruit crop grown mainly in temperate regions of the world. Tissue culture in vitro is a biotechnological technique that has been used to genetically improve cultivars (scions) and rootstocks. This could be important in the production of genetically uniform scions and rootstocks for commercial apple production. In nurseries, apple plants are produced by grafting scions onto rootstocks. The Cornell-Geneva (Geneva® series) breeding program has bred several dwarf rootstocks that are resistant to diseases and pests and are also cold hardy. This study was conducted to determine the optimal medium strength to improve sprouting shoot rate of apical meristem of the apple rootstocks of fire blight resistance. The apple rootstocks apical meristem at size (0.2 mm to 0.3 mm) with axillary buds were cultured on the MS(Murashige & Skoog) medium supplemented with plant growth regulators. The sprouting ratio and growth characteristics was evaluated after eight weeks in vitro culture. The highest rate of bud differentiation and shoot formation were 23.8% and 55.6%, respectively. After 6 weeks, shoots were regenerated from apical meristem, and their growth characteristics was significantly varied on the respective basal medium with different plant growth regulators. Our studies showed that the apple rootstocks the apple rootstocks of fire blight resistance plantlets could be successfully produced from apical meristem differentiated out of young twigs via organogenic regeneration.

  • PDF

Morphological Differences between Larvae of the Oriental Fruit Moth (Grapholita molesta Busck) and the Peach Fruit Moth (Carposina sasakii Matsumura) in Korea

  • Lee, Seung-Yeol;Choi, Kwang-Shik;Choi, Kyung-Hee;Yoon, Tae-Myung;Jung, Hee-Young
    • Applied Microscopy
    • /
    • v.43 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • The oriental fruit moth (Grapholita molesta Busck) and the peach fruit moth (Carposina sasakii Matsumura) are the most severe insect pests affecting apple orchards in Korea. To prevent an outbreak of these two species and to control these agricultural insect pests, it is important to identify them accurately. However, it is hard to classify them when they were in the larval stage since they tunnel into the apple fruit. In this study, surface structures of the two species of larvae were observed using stereo microscope and scanning electron microscope. Distinct differences between the two species of larvae were found. The prothorax spiracles of oriental fruit moth larvae were approximately twice as large as those of peach fruit moth larvae. The arrangements of subventral setae, located around the proleg, were different between oriental fruit moth and peach fruit moth larvae. Furthermore, subdorsal setae of oriental fruit moth were located next to the spiracle on the 8th abdominal segment, while that of peach fruit moth was located above the spiracle. The identification of the two species of larvae observed in this study was confirmed using polymerase chain reaction-restriction fragment length polymorphism method. Surface structural differences are intrinsic characteristics for each species of larvae and can easily be identified using stereo microscope. These specificities will be helpful where a large number of field-collected larvae need to be identified routinely in pest control research.