• Title/Summary/Keyword: apple orchard

Search Result 160, Processing Time 0.032 seconds

Oviposition Characteristics of Ricania sp.(Homoptera: Ricaniidae), a New Fruit Pest (과수의 신종해충인 날개매미충 일종의 산란특성)

  • Choi, Yong-Seok;Hwang, In-Soo;Kang, Tae-Ju;Lim, Ju-Rak;Choe, Kwang-Ryul
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.367-372
    • /
    • 2011
  • An unknown planthopper was discovered in 2010 in an apple orchard in Sinpoong-myun, Gongju-si and in a blueberry orchard in Deogsan-myun, Yesan-gun. This pest have arrived 4 or 5 years ago and the population density then rapidly increased. It was identified as Ricania sp. by Dr. Murray J. Fletcher. Adult Ricania sp. was found on 26 plants including blueberry, grape, peach, sumac, japanese angelica, jujube, kiwi, Rubus coreanus, apple, apricot, plum and chestnut. Females lay eggs on 1-year-old branches. The mean number of eggs laid on apple and plum were 18.7 and 15.3, respectively. The mean length of egg masses on apple and plum were 12.35 and 11.45 mm, respectively. The distance between eggs laid on apple and plum branchs were 1.3 and 1.5 mm, respectively. The mean number of eggs in the same length of egg mass on apple and plum branchs were 17.1 and 13.3, respectively.

Occurrence and Distribution of Weeds on Orchard Fields in Chungbuk Province of Korea (충북지역 과수원 발생 잡초 분포 현황)

  • Lee, Chae Young;Park, Jae Seong;Lee, Hee Du;Kim, Eun Jeong;Hong, Eui Yon;Hong, Seong Taek;Woo, Sun Hee
    • Weed & Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.71-81
    • /
    • 2016
  • This study was conducted to investigate the weed occurrence and distribution on the orchard fields (apple, pear, peach, grape) at 387 sites in Chungbuk province of Korea from May to September in 2015. From the result of this survey, 200 weed species in 47 families were identified and classified to 82 annuals, 40 biennials and 78 perennials. Based on the occurrence ratio, the most dominant weed species in Chungbuk province orchard fields were higher in order of Digitaria ciliaris (4.12%), Echinochloa crus-galli (3.60%), Stellaria aquatica (3.45%), Artemisia princeps (3.07%) and Chenopodium album (3.06%). The composition of major occurred weed families, Compositae, Poaceae, Leguminosae and Cyperaceae were 21, 9, 6 and 6%, respectively. Coefficient of similarity between a various orchards based on the degree of dominance were ranged from 68.7-91.8%. The most important weed species at apple, peach, grape was Digitaria ciliaris while these for pear was Poa annua. Fifty-one exotic weed species were also identified. The results of this study could be useful information for estimation of future weed occurrence, weed population dynamics and establishment of weed control methods on the orchard fields in Chungbuk province of Korea.

Biological Control of Apple Ring Rot on Fruit by Bacillus amyloliquefaciens 9001

  • Li, Yan;Han, Li-Rong;Zhang, Yuanyuan;Fu, Xuechi;Chen, Xinyi;Zhang, Lixia;Mei, Ruhong;Wang, Qi
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.168-173
    • /
    • 2013
  • Apple ring rot disease, caused by Botryosphaeria dothidea (Moug. ex. Fr) Ces. et de Not., is one of the most important diseases on apple fruits. In this study, strain 9001 isolated from healthy apple fruits from an infested orchard was evaluated for its biocontrol activity against apple ring rot in vitro and in vivo. Strain 9001 showed obvious antagonistic activity to B. dothidea YL-1 when plated on potato dextrose agar. Soaking healthy apples in the bacterial suspensions of strain 9001 prior to artificial inoculation of fungal pathogen resulted in a dramatic decrease in disease incidence when compared to the control. Moreover, either field application in the growth season or postharvest treatment of apples from infected orchards with bacterial suspensions of strain 9001 resulted in significantly reduced disease incidence within the storage period for 4 months at room temperature. Based on the phylogenetic analysis of 16S rRNA and the gyrA gene, strain 9001 was identified as Bacillus amyloliquefaciens. These results indicated that B. amyloliquefaciens 9001 could be a promising agent in biocontrol of apple ring rot on fruit, which might help to minimize the yield loss of apple fruit during the long postharvest period.

Apple detection dataset with visibility and deep learning detection using adaptive heatmap regression (가시성을 표시한 사과 검출 데이터셋과 적응형 히트맵 회귀를 이용한 딥러닝 검출)

  • Tae-Woong Yoo;Dasom Seo;Minwoo Kim;Seul Ki Lee;Il-Seok, Oh
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.19-28
    • /
    • 2023
  • In the fruit harvesting field, interest in automatic robot harvesting is increasing due to various seasonality and rising harvesting costs. Accurate apple detection is a difficult problem in complex orchard environments with changes in light, vibrations caused by wind, and occlusion of leaves and branches. In this paper, we introduce a dataset and an adaptive heatmap regression model that are advantageous for robot automatic apple harvesting. The apple dataset was labeled with not only the apple location but also the visibility. We propose a method to detect the center point of an apple using an adaptive heatmap regression model that adjusts the Gaussian shape according to visibility. The experimental results showed that the performance of the proposed method was applicable to apple harvesting robots, with MAP@K of 0.9809 and 0.9801 when K=5 and K=10, respectively.

Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear

  • Park, Jungkum;Lee, Gyu Min;Kim, Donghyuk;Park, Duck Hwan;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.445-450
    • /
    • 2018
  • Bacteriophages, bacteria-infecting viruses, have been recently reconsidered as a biological control tool for preventing bacterial pathogens. Erwinia amylovora and E. pyrifoliae cause fire blight and black shoot blight disease in apple and pear, respectively. In this study, the bacteriophage phiEaP-8 was isolated from apple orchard soil and could efficiently and specifically kill both E. amylovora and E. pyrifoliae. This bacteriophage belongs to the Podoviridae family. Whole genome analysis revealed that phiEaP-8 carries a 75,929 bp genomic DNA with 78 coding sequences and 5 tRNA genes. Genome comparison showed that phiEaP-8 has only 85% identity to known bacteriophages at the DNA level. PhiEaP-8 retained lytic activity up to $50^{\circ}C$, within a pH range from 5 to 10, and under 365 nm UV light. Based on these characteristics, the bacteriophage phiEaP-8 is novel and carries potential to control both E. amylovora and E. pyrifoliae in apple and pear.

Evidence of Greater Competitive Fitness of Erwinia amylovora over E. pyrifoliae in Korean Isolates

  • Choi, Jeong Ho;Kim, Jong-Yea;Park, Duck Hwan
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.355-365
    • /
    • 2022
  • Erwinia amylovora and E. pyrifoliae are the causative agents of destructive diseases in both apple and pear trees viz. fire blight and black shoot blight, respectively. Since the introduction of fire blight in Korea in 2015, the occurrence of both pathogens has been independently reported. The co-incidence of these diseases is highly probable given the co-existence of their pathogenic bacteria in the same trees or orchards in a city/district. Hence, this study evaluated whether both diseases occurred in neighboring orchards and whether they occurred together in a single orchard. The competition and virulence of the two pathogens was compared using growth rates in vitro and in planta. Importantly, E amylovora showed significantly higher colony numbers than E. pyrifoliae when they were co-cultured in liquid media and co-inoculated into immature apple fruits and seedlings. In a comparison of the usage of major carbon sources, which are abundant in immature apple fruits and seedlings, E. amylovora also showed better growth rates than E. pyrifoliae. In virulence assays, including motility and a hypersensitive response (HR), E. amylovora demonstrated a larger diameter of travel from the inoculation site than E. pyrifoliae in both swarming and swimming motilities. E. amylovora elicited a HR in tobacco leaves when diluted from 1:1 to 1:16 but E. pyrifoliae does not elicit a HR when diluted at 1:16. Therefore, E. amylovora was concluded to have a greater competitive fitness than E. pyrifoliae.

Community Structure of Phytophagous Arthropods and Their Natural Enemies at Different Weed Management Systems in Apple Orchards (사과원 잡초관리 방법에 따른 사과해충 및 천적의 군집구조)

  • 김동순;이준호;전흥용;임명순;김기열
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.256-265
    • /
    • 1995
  • The effect ground-cover weeds on the occurrence of apple pests and their natural enemies was studied in an apple orchard in Ahnsung, Kyung-gi do during seasons of 1993 and 1994. The major apple pests and their parasitoids and predators were surveyed on the apple tree canopy in tow experimental plots; a weed-free lot where all weeds were removed by herbicide treatment, and a mowed plot where weeds were allowed restrictly by cutting with an asickle. Also, a sweep net sampling was taken from ground-cover weeds in the mowed plot. There were no significant differences in the abundance of mite and aphids between two plots, although mite densities tend to be lower in the mowed plot. The apple leaf miner, Phyllonorycter ringoniella, was significantly fewer in the mowed plot,. The densities of natural enemies of mites and aphids were slightly higher in the mowed plot. The parasitism of apple leaf miner in the mowed plot was 6~10% and 20~25% higher than that in the weed-free plot in 1993 and 994, respectively. Several natural enemies such as Apanteles kuwayamai (Braconidae), Orius sauteri (Anthocoridae), Chrysopa sp. (Chrysopidae), coccinellidae, and Eulophidae were collected both from weeds and the apple trees, However, potential apple pests were not observed on weeds. The development of insect community on the apple tree canopy was restricted by the pesticide spray on apple trees, while the insect community on weeds was maintained without significant destruction by pesticides spray on apple trees. Consequentely, the ground-cover weeds under apple trees affected occurrences of apple pests and their natural enemies in apple trees. te specialist natural enemies such as apple leaf miner's parasitoids dispersed from weeds to the apple canopy and affected apple leaf miner density significantly. However, generalist predators that have preys available on weeds stayed on weeds, hence their control effects for mites and aphids on the apple canopy were low.

  • PDF

Combining ex vitro thermotherapy with shoot-tip grafting for elimination of virus from potted apple plants (기외 열처리와 경정접목을 이용한 사과 폿트묘에서의 바이러스 제거)

  • Chun, Jae An;Gwon, Jiyeong;Lee, Seon Gi
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.222-229
    • /
    • 2022
  • Apples are the most grown fruit crops in the fruit industry of Korea. However, virus or viroid infection such as apple mosaic virus (ApMV), apple stem grooving capillovirus (ASGV), apple stem pitting virus (ASPV), apple chlorotic leaf spot virus (ACLSV), apple scar skin viroid (ASSVd) causes fruit yield reduction and poor fruit quality. Therefore, in this study, we examined to established an efficient virus-free system to eliminate the most infected ASGV virus in domestic apple orchard. We investigated that the shoot growth rate and the virus removal rate in ASGV infected potted apples that were treated with heat treatment in a growth chamber (constant temperature/humidity device) maintained at 36℃, 38℃ and 40℃ for 4 weeks. Here we found that the shoot growth rate was the highest in the heat treatment group (36℃) and the virus was removed in the middle and top of the shoot but not in the bottom. The virus was did not removed in the 38℃ and 40℃ heat treatment group in all section of shoots, and the heat treatment group (40℃) died after 4 weeks of heat treatment without growth of shoots. We performed in vivo shoot-tip grafting using the shoot-tip of potted apple heat-treated at 36 ℃, and we also investigated the viability and virus removal rate, which showed 94% viability and 20% virus removal rate. Collectively, our results suggest that it would be possible to produce the virus-free apple plants through heat treatment and shoot-tip grafting.

Risk Assessment of Operator Exposure During Treatment of Fungicide Dithianon on Apple Orchard (사과 과수원에서 농약살포시 살균제 Dithianon의 농작업자 위해성 평가)

  • Cho, ll Kyu;Kim, Su Jin;Kim, Ji Myung;Oh, Young Goun;Seol, Jae Ung;Lee, Ji Ho;Kim, Jeong Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.302-311
    • /
    • 2018
  • BACKGROUND: Dithianon (75%) formulation were mixed and sprayed as closely as possible by normal practice on the ten farms located in the Mungeong of South Korea. Patches, cotton gloves, socks, masks, and XAD-2 resin were used for measurement of the potential exposure of dithianon on the applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to dithianon during preparation of spray suspension and application with a power sprayer on a apple orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump, IOM sampler and cassette, and glass fiber filter was used for inhalation exposure. The field studies were carried out in a apple orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 85.1% and 99.1% in the level of 100 LOQ (limit of quantification), while the LOQ for dithianon was $0.05{\mu}g/mL$ using HPLC-DAD. The exposure to dithianon on arms of the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, or legs). The exposure to dithianon on the applicator's legs (3.78 mg) was highest in the body parts. The dermal exposures for mixer/loader and applicator were 10 and 8.10 mg, respectively, from a grape orchard. The inhalation exposure during application was estimated as 0.151 mg, and the ratio of inhalation exposure was 11.2% of the dermal exposure (inner clothes). CONCLUSION: The dermal and inhalation exposure on the applicator appeared to be 4.203 mg - 25.064 mg and $0.529{\mu}g-116.241{\mu}g$, respectively. The total exposures on the agricultural applicators were at the level of 2.596 mg - 25.069 mg to dithianon during treatment for apple orchard. The TER showed 3.421 (>1) when AOEL of dithianon was used as a reference dose for the purpose of risk assessment of the mixing/loading and application.

Population Dynamics of Eriosoma lanigerum (Hemiptera: Aphididae) and Aphelinus mali (Hymenoptera: Aphelinidae) in Apple Orchards and Screening Effective Insecticides in the Laboratory (사과원에서 사과면충과 사과면충좀벌의 발생동태 및 살충제 실내검정)

  • Kim, Dong-Soon;Yang, Chang-Yeol;Jeon, Heung-Yong;Choi, Kyoung-Hee
    • Korean journal of applied entomology
    • /
    • v.48 no.3
    • /
    • pp.319-325
    • /
    • 2009
  • Woolly apple aphid, Eriosoma lanigerum, overwintered as adult or nymph stage on rootstocks, and crown- and root sucker in the soil. In an un sprayed apple orchard, the number of E. lanigerum colony started to increase from mid-April, showed the 1st peak between late June and early July, thereafter decreased followed by the 2nd peak in late July, and then again peaked in late September as the size in the 1st peak. In this orchard, the number of E. lanigerum colonies per tree did not exceed 3.5 colonies during the peak occurrence period, and was maintained around 2 colonies throughout seasons. In all seasons, parasitism of Aphelinus mali on E. lanigerum was much lower on root colonies than on aerial colonies that located on shoots and tree trunks above the ground. The parasitism of E. lanigerum was high in most orchards examined, showing parasitism of > 70% in maximum in most cases. In the laboratory bioassay for the mortality effects of several insecticides on E. lanigerum, fenitrothion, dichlorphos, machine oil, methidathion, thiacloprid, and imidacloprid showed 97.8, 96.8, 95.4, 91.5, 26.7, and 7.8% morality, respectively. Also, the adult emergence rates from A. mali mummies were 51.2, 72.6, 14.2, 3.5, 72.2, and 85.4% in the treatment of the above insecticides, respectively. Insecticides belong to neonicotinoid, which are newly developed to control aphids, showed low mortality against E. lanigerum. Fenitrothion and dichlorphos were effective on E. lanigerum control and had a low toxic to A. mali. Consequently, the insecticides should be useful in integrated pest management system for E. lanigerum in apple orchards.