• Title/Summary/Keyword: apparent viscosity

Search Result 337, Processing Time 0.044 seconds

Physicochemical Properties of Extruded Defatted Hemp Seed and Its Energy Bar Manufacturing (압출성형 삼종실의 이화학적 특성과 에너지바의 제조)

  • Gu, Bon-Jae;Norajit, Krittika;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study was to develop high-nutritious energy bar from extruded hemp obtained by extrusion process. Mixture of rice flour and defatted hemp was extruded at a barrel temperature of 110 and 130$^{\circ}C$, and moisture content of 20 and 25%. Properties of extrudates such as bulk density, expansion index, breaking strength, apparent elastic modulus, water absorption index (WAI), water solubility index (WSI) have been analyzed. The antioxidant potential was determined by the DPPH-radical scavenging assay. The expansion index was the highest in rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content among the other hemp-added extrudates. The WAI was increased with increase in moisture content, while the WSI was increased with increase in barrel temperature. The peak viscosity of rice extrudate had higher valule than those of extrudate added with hemp. DPPH scavenging activity of rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content showed the highest value. Sensory properties, moisture content and color were assessed for quality of energy bar. The color values of the energy bar indicated decreasing L (lightness) and b (yellowness), and increasing a (redness) after 30 days storage at ambient condition. The highest overall acceptable was the energy bar added with rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content.

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.

Production and Characterization of Extracellular Polysaccharide Produced by Pseudomonas sp. GP32 (Pseudomonas sp. GP32에 의해 생산된 세포 외 다당류의 생산 및 특성)

  • Lee, Myoung Eun;Lee, Hyun Don;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1027-1035
    • /
    • 2015
  • A strain GP32 which produces a highly viscous extracellular polysaccharide was conducted with soil samples and identified as Pseudomonas species. The culture flask conditions for the production of extracellular polysaccharide by Pseudomonas sp. GP32 were investigated. The most suitable carbon and nitrogen source for extracellular polysaccharide production were galactose and (NH4)2SO4. The optimum carbon/nitrogen ratio for the production of extracellular polysaccharide was around 50. The optimum pH and temperature for extracellular polysaccharide production was 7.5 and 32℃, respectively. In batch fermentation using a jar fermentor, the highest extracellular polysaccharide content (15.7 g/l) was obtained after 70 hr of cultivation. The extracellular polysaccharide produced by Pseudomonas sp. GP32 (designated Biopol32) was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation, and gel permeation chromatography. Biopol32, which has an estimated molecular weight of over 3×107 datons, is a novel polysaccharide derived from sugar components consisting of galactose, glucose, gulcouronic acid and galactouronic acid in an approximate molar ratio of 1.85 : 3.24 : 1.00 : 1.42. The solution of Biopol32 showed non-Newtonian characteristics. The viscosity of Biopol32 exhibited appeared to be higher at all concentration compared to that of zooglan from Zoogloea ramigera. An analysis of the flocculating efficiency of Biopol32 in industry wastewater (food, textile, and paper wastewater) revealed chemical oxygen demand (COD) reduction rates 58.4-67.3% and suspended solid (SS) removal rates 82.6-91.3%. Based on these results, Biopol32 is a possible candidate for industrial applications such as wastewater treatment.

Rheological Properties of ${\beta}-Glucan$ Isolated from Non-waxy and Waxy Barley (메성 및 찰성보리 ${\beta}-Glucan$의 리올로지 특성)

  • Choi, Hee-Don;Park, Yong-Gon;Jang, Eun-Hee;Seog, Ho-Moon;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.590-597
    • /
    • 2000
  • The rheological properties of ${\beta}-glucans$ isolated from non-waxy and waxy barley were investigated. ${\beta}-Glucan$ solutions showed pseudoplastic properties and their behaviors were explained by applying Power law model in the range of concentrations$(1{\sim}4%)$ and temperatures$(20{\sim}65^{\circ}C)$. The effects of temperature and concentration on the apparent viscosity at $700\;s^{-1}$ shear rate were examined by applying Arrhenius equation and power law equation, and their effect was more pronounced in waxy ${\beta}-glucan$ solutions. The activation energy for flow of ${\beta}-glucan$ solutions decreased with the increase of concentration, and the concentration-dependent constant A increased with the increase of temperature. The intrinsic viscosity of waxy ${\beta}-glucan$ was higher than that of non-waxy ${\beta}-glucan$. The transition from dilute to concentrate region occurred at a critical coil overlap parameter $C^*[{\eta}]=0.02.$ The slopes of non-waxy and waxy ${\beta}-glucan$ at $C[{\eta}] were similar, but the slope of waxy ${\beta}-glucan$ at $C[{\eta}]>C^*[{\eta}]$ was higher than that of non-waxy ${\beta}-glucan$. Dynamic viscoelasticity measurement showed that cross-over happened, and storage modulus was higher than loss modulus at frequency range above cross-over. ${\beta}-Glucan$ solutions formed weak gels after stored for 24 hr.

  • PDF

Mucilage Separation of Korean Yam Using Microparticulation/Air Classification Process (초미세분쇄/공기분급을 이용한 마의 점질물 분리)

  • Lee, Boo-Yong;Park, Dong-June;Ku, Kyung-Hyung;Kim, Hyun-Ku;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.596-602
    • /
    • 1994
  • To separate and concentrate mucilage from yam(Dioscorea batatas DECNE), yam was dried, microparticulated using impact mill and air-classified at different air classifying wheel speed(ACWS) in classifier. As ACWS increased from 5,000 rpm to 22,500 rpm, the contents of dietary fiber, protein and lipid of air classified microparticles(ACM) increased remarkably. Especially the ACM with ACWS over 15,000 rpm showed 36.41% dietary fiber and 16.66% protein. The dietary fiber and protein components were concentrated to $2.5{\sim}9.0$ times as compared with whole yam powder. Concomitantly the non-fibrous carbohydrate decreased from 88.31% to 16.84. The damaged starch(%), WSI and WAI of ACM of ACWS over 15,000 rpm were $1.5{\sim}3.0$ times higher than those of ACM under ACWS 15,000 rpm. The apparent viscosity of ACM was 0.0800 Pa s over ACWS 15,000 rpm and 0.0080 Pa s under ACWS 15,000 rpm. Judging from viscosity of ACM, the mucilage component of yam was concentrated to 10 times. In conclusion, the optimum process to separate and concentrate the mucilage from yam consisted of the microparticulation to $5{\sim}30{\mu}m$ and the air-classification at ACWS over 15,000 rpm.

  • PDF

The Effect of Heating Rate by Ohmic Heating on Rheological Property of Corn Starch Suspension (Ohmic Heating에 의한 가열속도 변화가 옥수수전분의 물성특성에 미치는 영향)

  • Lee, Seok-Hun;Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.438-442
    • /
    • 2005
  • Granule swelling is essential phenomenon of starch gelatinization in excess water, and characteristic of heated starch dispersion depends largely on size and distribution of swelled starch granule. Although swelling characteristic of starch granules depends on type of starch, heating rate, and moisture content, influence of heating rate on swelling phenomenon of starch granule has not been fully discussed, because constant heating rate of starch dispersion cannot be obtained by conventional heating method. Ohmic heating, electric-resistant heat generation method, applies alternative current to food materials, through which heating rate can be easily controlled precisely and conveniently at wide range of constant heating rates. Starch dispersion heated at low heating rates below $7.5^{\circ}C/min$ showed Newtonian fluid behavior, whereas showed pseudoplastic behavior at heating rates above $16.4^{\circ}C/min$. Apparent viscosity of starch dispersion increased linearly with increasing heating rate, and yield stress was dramatically increased at heating rates above $16.4^{\circ}C/min$. Average diameter of corn starch granules during ohmic heating was dramatically increased from $30.97\;to\;37.88\;{\mu}m$ by increasing heating rate from $0.6\;to\;16.4^{\circ}C/min$ (raw corn starch: $13.7\;{\mu}m$). Hardness of starch gel prepared with 15% corn starch dispersion after heating to $90^{\circ}C$ at different heating rates decreased gradually with increasing heating rate, then showed nearly constant value from $9.4\;to\;23.2^{\circ}C/min$. Hardness increased with increase of heating rate higher than $23.2^{\circ}C/min$.

Starch Structure and Physicochemical Properties of Colored Rice Varieties (유색미 품종별 전분 구조 및 이화학적 특성)

  • Park, Ji-Young;Oh, Sung-Hwan;Han, Sang-Ik;Lee, Yu-Young;Lee, Byung-Won;Ham, Hyeonmi;Choi, Yong Hwan;Oh, Sea-Kwan;Cho, Jun Hyeon;Song, You Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.153-162
    • /
    • 2016
  • We investigated the physicochemical properties and starch structure of various rice varieties including 15 colored cultivars. NKHC showed the highest level of protein, lipid, and total dietary fiber levels. Reddish brown rice showed higher lipid content than that in black rice cultivars. Apparent amylose content of waxy and non-waxy colored rice varieties was within the range of 3~5% and 15~18%, respectively. IP exhibited the highest total starch (TS) content, whereas, NKHC and HJJ showed lower TS content than that in other cultivars. Pasting temperature of all colored rice cultivars, except IP, was about $68^{\circ}C$. Peak viscosity of IP, JJJ, Hong, and GGHM showed high values of 138, 130, 128, and 124, respectively. All the colored rice cultivars presented A-type X-ray diffraction pattern and polygonal shapes of starch granules were observed using scanning electron micrographs (SEM). Major groups of amylopectin chain lengths were B (12 < DP ${\leq}$ 24) and A (DP ${\leq}$ 12). SMHC showed the highest B chain content and the lowest A chain content (P < 0.05). These experimental results provided useful information for scientists and the food industry regarding colored rice starches.