• Title/Summary/Keyword: apoptotic neuronal cell death

Search Result 116, Processing Time 0.025 seconds

Studies on the Anti-apoptotic Effect of the Mudanpi (목단피가 세포고사의 억제에 미치는 영향에 관한 연구)

  • Kwon Duck Yun;Bae Young Chun;Lee Sang Min;Yoo Kwan Seok;Joo Jong Cheon;Kim Kyung Yo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1071-1077
    • /
    • 2004
  • Mudanpi (Cortex Moutan Radicis; the root cortex of Paeonia suffruticosa Andrews) is an important Chinese crude drug used in many oriental prescriptions. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose (PGG), a major component of this crude drug, has been shown to possess potent antioxidant, anti-mutagenic and anti-proliferative effects. In this study, I examined whether PGG could protect Neuro 2A cells, a kind of neuronal cell lines, from oxidative damage through the induction of HO-1 expression and HO activity. Exposure of Neuro 2A cells to PGG (10-50μM) resulted in a concentration- and time-dependent induction of HO-1 mRNA, and protein expressions and heme oxygenase activity. PGG protected the cells from hydrogen peroxide-induced cell death. The protective effect of PGG on hydrogen peroxide-induced cell death was abrogated by zinc protoporphyrin IX (ZnPP IX), a HO inhibitor. These results indicate that PGG is a potent inducer of HO-1 and HO-1 induction is responsible for the PGG-mediated cytoprotection against oxidative damage.

Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells

  • Kim, Dong Hoi;Kim, Dae Won;Jung, Bo Hyun;Lee, Jong Hun;Lee, Heesu;Hwang, Gwi Seo;Kang, Ki Sung;Lee, Jae Wook
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.326-334
    • /
    • 2019
  • Background: The objective of our study was to analyze the neuroprotective effects of ginsenoside derivatives Rb1, Rb2, Rc, Rd, Rg1, and Rg3 against glutamate-mediated neurotoxicity in HT22 hippocampal mouse neuron cells. Methods: The neuroprotective effect of ginsenosides were evaluated by measuring cell viability. Protein expressions of mitogen-activated protein kinase (MAPK), Bcl2, Bax, and apoptosis-inducing factor (AIF) were determined by Western blot analysis. The occurrence of apoptotic and death cells was determined by flow cytometry. Cellular level of $Ca^{2+}$ and reactive oxygen species (ROS) levels were evaluated by image analysis using the fluorescent probes Fluor-3 and 2',7'-dichlorodihydrofluorescein diacetate, respectively. In vivo efficacy of neuroprotection was evaluated using the Mongolian gerbil of ischemic brain injury model. Result: Reduction of cell viability by glutamate (5 mM) was significantly suppressed by treatment with ginsenoside Rb2. Phosphorylation of MAPKs, Bax, and nuclear AIF was gradually increased by treatment with 5 mM of glutamate and decreased by co-treatment with Rb2. The occurrence of apoptotic cells was decreased by treatment with Rb2 ($25.7{\mu}M$). Cellular $Ca^{2+}$ and ROS levels were decreased in the presence of Rb2, and in vivo data indicated that Rb2 treatment (10 mg/kg) significantly diminished the number of degenerated neurons. Conclusion: Our results suggest that Rb2 possesses neuroprotective properties that suppress glutamate-induced neurotoxicity. The molecular mechanism of Rb2 is by suppressing the MAPKs activity and AIF translocation.

Tat-Thioredoxin-like protein 1 attenuates ischemic brain injury by regulation of MAPKs and apoptosis signaling

  • Hyun Ju Cha;Won Sik Eum;Gi Soo Youn;Jung Hwan Park;Hyeon Ji Yeo;Eun Ji Yeo;Hyun Jung Kwon;Lee Re Lee;Na Yeon Kim;Su Yeon Kwon;Yong-Jun Cho;Sung-Woo Cho;Oh-Shin Kwon;Eun Jeong Sohn;Dae Won Kim;Duk-Soo Kim;Yu Ran Lee;Min Jea Shin;Soo Young Choi
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.234-239
    • /
    • 2023
  • Thioredoxin-like protein 1 (TXNL1), one of the thioredoxin superfamily known as redox-regulator, plays an essential in maintaining cell survival via various antioxidant and anti-apoptotic mechanisms. It is well known that relationship between ischemia and oxidative stress, however, the role of TXNL1 protein in ischemic damage has not been fully investigated. In the present study, we aimed to determine the protective role of TXNL1 against on ischemic injury in vitro and in vivo using cell permeable Tat-TXNL1 fusion protein. Transduced Tat-TXNL1 inhibited ROS production and cell death in H2O2-exposed hippocampal neuronal (HT-22) cells and modulated MAPKs and Akt activation, and pro-apoptotic protein expression levels in the cells. In an ischemia animal model, Tat-TXNL1 markedly decreased hippocampal neuronal cell death and the activation of astrocytes and microglia. These findings indicate that cell permeable Tat-TXNL1 protects against oxidative stress in vitro and in vivo ischemic animal model. Therefore, we suggest Tat-TXNL1 can be a potential therapeutic protein for ischemic injury.

Protective Effect of Sanguisorba officinalis L. Root on Amyloid ${\beta}$ Protein (25-35)-induced Neuronal Cell Damage in Cultured Rat Cortical Neuron

  • Ban, Ju-Yeon;Cho, Soon-Ock;Jeon, So-Young;Song, Kyung-Sik;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.219-226
    • /
    • 2005
  • Sanguisorbae radix (SR) from Sanguisorba officinalis L. (Losaceae) is widely used in Korea and China due to its various pharmacological activity. The present study aims to investigate the effect of the methanol extract of SR on amyloid ${\beta}$ Protein(25-35) $(A{\beta}\;(25-35))$, a synthetic 25-35 amyloid peptide, -induced neurotoxicity using cultured rat cortical neurons. SR, over a concentration range of $10-50\;{\mu}g/ml$, inhibited the $A{\beta}$ (25-35) $(10\;{\mu}M)-induced$ neuronal cell death, as assessed by a 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. Pretreatment of SR $(50\;{\mu}g/ml)$ inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced} elevation of cytosolic calcium concentration $([Ca^{2+}]c)$, which was measured by a fluorescent dye, fluo-4 AM. SR $(10\;and\;50\;{\mu}g/ml)$ inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}(25-35)$, which was measured by HPLC, and generation of reactive oxygen species. These results suggest that SR prevents $A{\beta}$ (25-35)-induced neuronal cell damage in vitro.

Extract of Cedrela sinensis Leaves Protects Neuronal Cell Damage Induced by Hydrogen Peroxide in Cultured Rat Neurons (과산화수소수로 유도된 배양신경세포손상에 대한 참죽나무잎 추출물의 보호효과)

  • Lee, Soon-Bok;Kim, Ju-Yeon;Cho, Soon-Ock;Ban, Ju-Yeon;Ju, Hyun-Soo;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.444-450
    • /
    • 2007
  • Dried leaves from Cedrela sinensis A. Juss. (CS), have been observed to possess various pharmacological activity and contain various antioxidant constituents. The protective effect of ethanol extract of CS on hydrogen peroxide $(H_2O_2)-induced$ neurotoxicity was examined using primary cultured rat cortical neurons in the present study. Exposure of cultured neurons to 100 ${\mu}M\;H_2O_2$ caused a significant neuronal death as assessed by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. The addition of CS, over a concentration range of 10 to $50{\mu}g/m{\ell}$, concentration-dependently prevented the $H_2O_2-induced$ neuronal apoptotic death. CS $(50{\mu}g/m{\ell})$ significantly inhibited $H_2O_2-induced$ elevation of the cytosolic $Ca^{2+}$ concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fluo-4 AM. CS (30 and $50{\mu}g/m{\ell})$ inhibited glutamate release and generation of reactive oxygen species (ROS) induced by $100{\mu}M\;H_2O_2$. These results suggest that CS may mitigate the $H_2O_2-induced$ neurotoxiciy by interfering with the increase of $[Ca^{2+}]_c$, and then inhibiting glutamate release and generation of ROS in cultured neurons.

Protective Effect of Wheat Bran Extract against β-Amyloid-induced Cell Death and Memory Impairment (베타아밀로이드로 유도된 신경세포 사멸과 기억력 손상에 대한 밀기울추출물의 보호효과)

  • Lee, Chan;Park, Gyu-Hwan;Lee, Jong-Won;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.67-75
    • /
    • 2015
  • Objectives : The aim of this study is to examine the neuroprotective effect of wheat bran extract (WBE) against ${\beta}$-amyloid ($A{\beta}$)-induced apoptotic cell death in SH-SY5Y human neuroblastoma cells and memory impairment in triple transgenic animal model's of Alzheimer's disease (3xTg AD mice). Methods : In SH-SY5Y cells, MTT assay and TUNEL staining were conducted to evaluate the protective effect of WBE against $A{\beta}_{25-35}$-induced neurotoxicity and apoptosis. Alterations in mitochondrial transmembrane potential (MMP), expression of proapoptotic Bax and antiapoptotic Bcl-2 proteins, cleavage of PARP, and brain-derived neurotrophic factor (BDNF) levels were analyzed to elucidate the neuroprotective mechanism of WBE. To further investigate the memory enhancing effect of WBE, Morris water maze test was performed in 3xTg AD mice. Results : In SH-SY5Y cells, WBE protected against $A{\beta}_{25-35}$-caused cytotoxicity and apoptosis as shown by the restoration of cell viability in MTT assay and inhibition of DNA fragmentation in TUNEL staining. $A{\beta}_{25-35}$-induced apoptotic signals such as dissipation of MMP, decreased Bcl-2/Bax ratio, and cleavage of PARP were suppressed by WBE. Moreover, WBE up-regulated the protein levels of BDNF, which seemed to be mediated by activation of cAMP response element-binding protein (CREB). In 3xTg AD mice, oral administration of WBE attenuated learning and memory deficit as verified by reduced mean escape latency in water maze test. Conclusions : WBE protects neuronal cells from $A{\beta}_{25-35}$-induced apoptotic cell death and restores learning and memory impairments in 3xTg AD mice. These findings suggest that WBE exhibit neuroprotective potential for the management of AD.

Effect on Gene Expression Profile of Rat Hippocampus Caused by Administration of Memory Enhancing Herbal Extract (육미지황탕가미방이 흰쥐의 기억능력과 중추신경계 유전자 발현에 미치는 영향)

  • Choi So Eop;Bae Hyun Su;Shin Min Kyu;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.1025-1034
    • /
    • 2002
  • The herbal extract (YMT_02) is a modified herbal extracts from Yukmijihwang-tang (YMJ) to promote memory-enhancing. The YMJ extracts has been widely used as an anti-aging herbal medicine for hundred years in Asian countries. The purpose of this study is to; 1) quantitatively evaluate the memory-enhancing effect of YMT_02 by behavior task, 2) identify candidate genes responsible for enhancing memory by cDNA microarray and 3) assess the anti-oxidant effect of YMT_02 on PC12 cell. Memory retention abilities are addressed by passive avoidance task with Sprague-Dawley (SD) male rat. Before the training session, the rats are subdivided into four groups and administrated with YMT_02, Ginkgo biloba, Soya lecithin and normal saline for 10 days. The retention test was performed. 24 hours after the training session. The retention time of the YMT_02 group was significantly (p<0.05) delayed (~100%), whereas Ginkgo biloba and Soya lecithin treatment delayed 20% and 10% respectively. The hippocampi of YMT_02 and control group were dissected and mANA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied to Incyte rat GEMTM 2 cDNA microarray. The microarray results show that prealbumin(transthyretin), phosphotidylethanolamine N-methyltransferase, and PEP-19 are expressed abundantly in the YMT_02 treated group. Especially, PEP-19 is a neuron-specific protein, which inhibits apoptotic processes in neuronal cell. On the other hand, transcripts of RAB15, glutamate receptor subunit 2 and CDK108 are abundant in control group. Besides, neuronal genes involved in neuronal death or neurodegeneration such as neuronal-pentraxin and spectrin are abundantly expressed in control group. Additionally, the YMT_02 shows an anti oxidative effect in the PC12 cell. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the memory-enhancing effect of herbal extracts YMT_02, for example, anti-apoptotic, anti-oxidative, and neuroprotective effects.

Neuroprotective effects of urolithin A on H2O2-induced oxidative stress-mediated apoptosis in SK-N-MC cells

  • Kim, Kkot Byeol;Lee, Seonah;Kim, Jung Hee
    • Nutrition Research and Practice
    • /
    • v.14 no.1
    • /
    • pp.3-11
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Oxidative stress causes cell damage and death, which contribute to the pathogenesis of neurodegenerative diseases. Urolithin A (UA), a gut microbial-derived metabolite of ellagitannins and ellagic acid, has high bioavailability and various health benefits such as antioxidant and anti-inflammatory effects. However, it is unknown whether it has protective effects against oxidative stress-induced cell death. We investigated whether UA ameliorates H2O2-induced neuronal cell death. MATERIALS/METHODS: We induced oxidative damage with 300 μM H2O2 after UA pretreatment at concentrations of 1.25, 2.5, and 5 μM in SK-N-MC cells. Cytotoxicity and cell viability were determined using the CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using a 2,7-dichlorofluorescein diacetate assay. Hoechst 33342 staining was used to characterize morphological changes in apoptotic cells. The expressions of apoptosis proteins were measured using Western blotting. RESULTS: UA significantly increased cell viability and decreased intracellular ROS production in a dose-dependent manner in SK-N-MC cells. It also decreased the Bax/Bcl-2 ratio and the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved PARP. In addition, it suppressed the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS: UA attenuates oxidative stress-induced apoptosis via inhibiting the mitochondrial-related apoptosis pathway and modulating the p38 MAPK pathway, suggesting that it may be an effective neuroprotective agent.

Alzheimer's Disease-linked Swedish Amyloid Precursor Protein Mutation Induces Cell Death by Increasing Reactive Oxygen Species Generation

  • Kim Hye Sun;Lee Jun Ho;Kim Eun Mee;Lee Jean Pyo;Suh Yoo Hun
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • The Swedish double mutation (KM670/671NL) of amyloid precursor protein (Swe-APP) is associated with early-onset familial Alzheimer's disease (FAD) and increases amyloid beta peptide production. Although APP/A/3 mediated neurotoxicity is observed both in vitro and in vivo, the relationship between mutant APP expression, A/3 production, and neuronal death observed in the brains of FAD patients remains to be elucidated. In this study, we investigated the mechanisms of Swe-APP-induced cell death in HEK293 and NGF-differentiated PC 12 cells. We found that the expression of Swe-APP induced cytochrome C relase, activation of caspase 3 in HEK 293 and NGF-differentiated PC 12 cells. We also show that the reactive oxygen species (ROS) was detected in Swe-APP expressing HEK 293 cells and NGF-differentiated PC 12 cells and that pretreatment with vitamine E attenuated the cellular death, cytochrome C release induced by Swe-APP expression, indicating the involvement of free radical in these processes. These results suggest one of possible apoptotic mechanisms of Swe-APP which could occur through cytochrome C release from mitochondria and this apoptosis inducing effects could be at least in part, due to ROS generation by Swe-APP expression.

  • PDF

Green tea polyphenol (-)-epigallocatechin-3-gallate prevents ultraviolet-induced apoptosis in PC12 cells

  • Woo, Su-Mi;Kim, Yoon-Jung;Cai, Bangrong;Park, Sam-Young;Kim, Young;Kim, Ok Joon;Kang, In-Chol;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.179-189
    • /
    • 2020
  • Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) is a potent antioxidant with protective effects against neurotoxicity. However, it is currently unclear whether EGCG protects neuronal cells against radiation-induced damage. Therefore, the objective of this study was to investigate the effects of EGCG on ultraviolet (UV)-induced oxidative stress and apoptosis in PC12 cells. The effects of UV irradiation included apoptotic cell death, which was associated with DNA fragmentation, reactive oxygen species (ROS) production, enhanced caspase-3 and caspase-9 activity, and poly (ADP-ribose) polymerase cleavage. UV irradiation also increased the Bax/Bcl-2 ratio and mitochondrial pathway-associated cytochrome c expression. However, pretreatment with EGCG before UV exposure markedly decreased UV-induced DNA fragmentation and ROS production. Furthermore, the UV irradiation-induced increase in Bax/Bcl-2 ratio, cytochrome c upregulation, and caspase-3 and caspase-9 activation were each ameliorated by EGCG pretreatment. Additionally, EGCG suppressed UV-induced phosphorylation of p38 and rescued UV-downregulated phosphorylation of ERK. Taken together, these results suggest that EGCG prevents UV irradiation-induced apoptosis in PC12 cells by scavenging ROS and inhibiting the mitochondrial pathways known to play a crucial role in apoptosis. In addition, EGCG inhibits UV-induced apoptosis via JNK inactivation and ERK activation in PC12 cells. Thus, EGCG represents a potential neuroprotective agent that could be applied to prevent neuronal cell death induced by UV irradiation.