• 제목/요약/키워드: apoptotic neuronal cell death

검색결과 116건 처리시간 0.033초

Overexpression of Bcl-2 protects differentiated PC12 cells against beta amyloid- induced apoptosis through inhibition of NF-kB and p38 MAP kinase activation

  • Song, Youn-Sook;Park, Hye-Ji;Hwang, In-Young;Lee, Sun-Young;Yun, Yeo-Pyo;Lee, Myung-Koo;Oh, Ki-Wan;Hong, Jin-Tae
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.197.2-198
    • /
    • 2003
  • Activation of the apoptosis program by an increased production of beta-amyloid peptides (A${\beta}$) has been implicated in the neuronal cell death of Alzheimer's disease. Bcl-2 is a well demonstrated anti-apoptotic protein, however, the mechanism of anti-apoptotic action of Bcl-2 in A${\beta}$-induced apoptosis of neuronal cells is not fully understood. (omitted)

  • PDF

Anti-apoptotic Effects of Red Ginseng on Oxidative Stress Induced by Hydrogen Peroxide in SK-N-SH Cells

  • Kim, Eun-Hye;Lee, Mi-Jeong;Kim, In-Hye;Pyo, Suhk-Neung;Choi, Kwang-Tae;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • 제34권2호
    • /
    • pp.138-144
    • /
    • 2010
  • Ginseng (Panax ginseng C.A. Meyer) has been shown to have anti-stress effects in animal studies. However, most studies have only managed to detect altered levels of biomarkers or enzymes in blood or tissue, and the actual molecular mechanisms by which ginseng exerts these effects remain unknown. In this study, the anti-oxidative effect of Korean red ginseng (KRG) was examined in human SK-N-SH neuroblastoma cells. Incubation of SK-N-SH cells with the oxidative stressor hydrogen peroxide resulted in significant induction of cell death. In contrast, pre-treatment of cells with KRG decreased cell death significantly. To elucidate underlying mechanisms by which KRG inhibited cell death, the expression of apoptosis-related proteins was examined by Western blot analysis. KRG pre-treatment decreased the expression of the pro-apoptotic gene caspase-3, whereas it increased expression of the anti-apoptotic gene Bcl-2. Consistent with this, immunoblot analysis showed that pre-treatment of the SK-N-SH cells with KRG inhibited expression of the pro-inflammatory gene cyclooxygenase 2 (COX-2). RT-PCR analysis revealed that the repression of COX-2 expression by KRG pre-treatment occurred at the mRNA level. Taken together, our data indicate that KRG can protect against oxidative stress-induced neuronal cell death by repressing genes that mediate apoptosis and inflammation.

PROTECTION EFFECT OF GINSENG EXTRACT AGAINST APOPTOTIC CELL DEATH INDUCED BY 2,2,5,5-TETRACHLOROBIPHENYL IN NEURONAL SK-N-MC CELLS

  • Lee, Ji-Young;Kim, Jae-Won;Song, Ji-Eun;Kim, Soo-Jung;Chung, Weon-Gu;Kim, Yong-Hoon;Lee, Bo-Ram;Kim, Jin-Hee;Choi, Young-Keun;Joo, Woo-Hong;Cho, Yong-Kweon;Moon, Ja-Young
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.112-112
    • /
    • 2001
  • Oxidative stress plays an important role in the pathological process of neurodegenerative diseases. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants, some of which may be neurotoxic. Our previous studies showed that 2,2',5,5'-TetracWorobiphenyl (PCB 52) induced apoptotic death in human neuronal SK-N-MC cells, which was demonstrated on gel electrophoresis by visualization of the proteolytic cleavages of $\beta$-catenin and poly (ADP-ribose) polymerase (PARP) and of the production of characteristic ladder patterns of DNA fragmentation.

  • PDF

영양혈청 결핍성 PC12 세포고사에서 HO-1의 발현 증가를 통한 환소단의 보호 효과 (Protective Effect of Hwansodan in Serum and Glucose Deprivation Induced-apoptotic Death of PC12 Cells Via Ho-1 Expression)

  • 정재은;김진경;강백규;박찬희;박래길;문병순
    • 동의생리병리학회지
    • /
    • 제20권6호
    • /
    • pp.1459-1466
    • /
    • 2006
  • The water extract of Hwansodan has been traditionally used for treatment of ischemic brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of Hwansodan rescues cells from neurodegenerative disease. PC12 pheochromocytoma cells have been used extensively as a model for studying the cellular and molecular mechanisms of neuronal cell damages. Under deprivation of growth factor and ischemic injury, PC12 cells spontaneously undergoes apoptotic cell death. Serum and glucose deprivation markedly decreased the viability of PC12 cells, which was characterized with apparent apoptotic features such as membrane blebbing as well as fragmentation of genomic DNA and nuclei. However, the aqueous extract of Hwansodan significantly reduced serum and glucose deprivation-induced cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Pretreatment of Hwansodan also ingibited the activation of caspase-3, in turn, degradation of ICAD/DFF45 was completely abolished in serum and glucose deprivated cells. Furthermore, pretreatment of Hwansodan obviously increased heme oxygenase 1 (HO-1) expression in PC12 cells. Taken together, the data suggest that the protective effects of Hwansodan against serum and glucose deprivation induced oxidative injuries may be achieved through the scavenging of reactive oxygene species accompanying with HO-1 induction.

The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma

  • Kim, Yu-Ri
    • Nutrition Research and Practice
    • /
    • 제4권6호
    • /
    • pp.455-461
    • /
    • 2010
  • The tumor microenvironment, particularly sufficient nutrition and oxygen supply, is important for tumor cell survival. Nutrition deprivation causes cancer cell death. Since apoptosis is a major mechanism of neuronal loss, we explored neuronal apoptosis in various microenvironment conditions employing neuroblastoma (NB) cells. To investigate the effects of tumor malignancy and differentiation on apoptosis, the cells were exposed to poor microenvironments characterized as serum-free, low-glucose, and hypoxia. Incubation of the cells in serum-free and low-glucose environments significantly increased apoptosis in less malignant and more differentiated N-type IMR32 cells, whereas more malignant and less differentiated I-type BE(2)C cells were not affected by those treatments. In contrast, hypoxia (1 % $O_2$) did not affect apoptosis despite cell malignancy. It is suggested that DLK1 constitutes an important stem cell pathway for regulating self-renewal, clonogenicity, and tumorigenicity. This raises questions about the role of DLK1 in the cellular resistance of cancer cells under poor microenvironments, which cancer cells normally encounter. In the present study, DLK1 overexpression resulted in marked protection from apoptosis induced by nutrient deprivation. This in vitro model demonstrated that increasing severity of nutrition deprivation and knock-down of DLK1 caused greater apoptotic death, which could be a useful strategy for targeted therapies in fighting NB as well as for evaluating how nutrient deprived cells respond to therapeutic manipulation.

Inhibition of Hypoxia-induced Apoptosis in PC12 Cells by Estradiol

  • Jung, Ji-Yeon;Roh, Kwang-Hoon;Jeong, Yeon-Jin;Kim, Sun-Hun;Lee, Eun-Ju;Kim, Min-Seok;Oh, Won-Mann;Oh, Hee-Kyun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.231-238
    • /
    • 2005
  • Neuronal apoptotic events, which result in cell death, are occurred in hypoxic/ischemic conditions. Estradiol is a female sex hormone with steroid structure known to provide neuroprotection through multiple mechanisms in the central nervous system. This study was aimed to investigate the signal transduction pathway of $CoCl_2$-induced neuronal cell death and the inhibitory effects of estradiol. Administration of $CoCl_2$ decreased cell viability in both a dose- and time-dependent manner in PC12 cells. $CoCl_2$-induced cell death produced genomic DNA fragmentation and morphologic changes such as cell shrinkage and condensed nuclei. It was found that $CoCl_2$-treated cells increased the reactive oxygen species (ROS) as well as caspase-8, -9 and -3 activities. However, pretreatment with estradiol before exposure to $CoCl_2$ prevented the reduction in cell viability reduction and attenuated DNA fragmentation and morphologic changes caused by $CoCl_2$. Furthermore, the $CoCl_2$-induced increases of ROS levels and caspases activities were attenuated by estradiol. Gene expression analysis revealed that estradiol blocked the underexpression of the Bcl-2 and ameliorated the increase in the release of cytochrome c from mitochondria into cytoplasm and Fas-ligand (Fas-L) upregulated by $CoCl_2$. These results suggest that $CoCl_2$ induce apoptosis in PC12 cells through both mitochondria- and death receptor-mediated cell death pathway. Estradiol was found to have a neuroprotective effect against $CoCl_2$-induced apoptosis through the inhibition of ROS production and by modulating apoptotic effectors associated with the mitochondria- and death-dependent pathway in PC12 cells.

트레드밀 운동이 streptozotocin에 의해 유발된 당뇨 쥐의 망막 신경세포 사멸에 미치는 영향 (Effect of treadmill exercise on apoptosis in the retinas of streptozotocin-induced diabetic rats)

  • 김대영;정선영;김태운;성윤희
    • 운동과학
    • /
    • 제21권3호
    • /
    • pp.289-298
    • /
    • 2012
  • 본 연구는 당뇨를 유발한 흰쥐에서 트레드밀 운동이 망막 신경세포의 사멸에 억제 효과가 있는지를 실험 하였다. 본 연구에서 Sprague-Dawley계 흰쥐 28마리를 대조군, 운동군, 당뇨군, 당뇨운동군으로 분류하여 각 군당 7마리씩 배정하였다. 당뇨는 streptozotocin을 복강에 주사하여 유발하였다. 운동군은 분당 8 m의 속도로 하루 30분씩 주 5회, 총 12주 동안 트레드밀 운동을 실시하였다. 본 연구의 결과, 당뇨 유발 흰쥐의 망막에서 세포사멸 인자인 terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)-양성 세포수 그리고 caspase-3, cytochrome c, Bax의 발현이 증가되었으며, 항 세포사멸 인자인 Bcl-2의 발현은 감소되었다. 트레드밀 운동은 TUNEL-양성 세포수 그리고 caspase-3, cytochrome c, Bax의 발현을 감소시켰으며, Bcl-2의 발현은 증가시켰다. 본 실험의 결과, 당뇨에 의한 망막의 세포사멸 증가에 트레드밀 운동이 억제 작용을 나타내었으며, 따라서 트레드밀 운동은 당뇨 환자들에서 후유증을 경감시키는데 효과적인 치료법임을 알 수 있었다.

Ginsenoside Rg3 from Red Ginseng Prevents Damage of Neuronal Cells through the Phosphorylation of the Cell Survival Protein Akt

  • Joo, Seong-Soo;Won, Tae-Joon;Lee, Yong-Jin;Hwang, Kwang-Woo;Lee, Seon-Gu;Yoo, Yeong-Min;Lee, Do-Ik
    • Food Science and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.244-247
    • /
    • 2006
  • Neuronal cell death significantly contributes to neuronal loss in neurological injury and disease. Typically, neuronal loss or destruction upon exposure to neurotoxins, oxidative stress, or DNA damage causes neurodegenerative diseases such as Alzheimer's disease. In this study, we attempted to determine whether ginsenoside Rg3 from red ginseng has a neuroprotective effect via an anti-apoptotic role induced by S-nitroso-N-acetylpenicillamine (SNAP) at the molecular level. We also investigated the antioxidant effect of Rg3 using a metal-catalyzed reaction with $Cu^{2+}/H_2O_2$. Our results showed that Rg3 ($40-100\;{\mu}g/mL$) protected SK-N-MC neuroblastoma cells under cytotoxic conditions and effectively protected DNA from fragmentation. In the signal pathway, caspase-3, and poly (ADP-ribose) polymerase (PARP) were kept at an inactivated status when pretreated with Rg3 in all ranges. In particular, the important upstream p-Akt signal pathway was increased in a dose-dependent manner, which indicates that Rg3 may contribute to cell survival. We also found that oxidative stress can be mitigated by Rg3. Therefore, we have concluded that Rg3 plays a certain role in neurodegenerative pathogenesis via an anti apoptotic, antioxidative effect.

육미지황탕가미방(六味地黃湯加味方)이 흰쥐의 기억능력과 중추신경계 유전자 발현에 미치는 영향 (The effect on gene expression profile of rat hippocampus caused by administration of memory enhancing herbal extract)

  • 최보업
    • 한국한의학연구원논문집
    • /
    • 제8권1호
    • /
    • pp.109-126
    • /
    • 2002
  • The herbal extract (YMT_02) is a modified herbal extracts from Yukmijihwangtang (YMJ) to promote memory-enhancing. The YMJ extracts has been widely used as an anti-aging herbal medicine for hundred years in Asian countries. The purpose of this study is to; 1) quantitatively evaluate the memory-enhancing effect of YMT_02 by hehavior task, 2) identify candidate genes responsible for enhancing memory by cDNA microarray and 3) assess the anti-oxidant effect of YMT_02 on PC12 cell. Memory retention abilities are addressed by passive avoidance task with Sprague-Dawley (SD) male rat. Before the training session, the rats are subdivided into four groups and administrated with YMT_02, Ginkgo biloba, Soya lecithin and normal saline for 10 days. The retention test was performed. 24 hours after the training session. The retention time of the YMT_02 group was significantly (p<0.05) delayed $({\sim}100%)$, whereas Ginkgo biloba and Soya lecithin treatment delayed 20% and 10% respectively. The hippocampi of YMT_02 and control group were dissected and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied to Incyte rat GEMTM 2 cDNA microarray. The microarray results show that prealbumin(transthyretin), phosphotidy lethanolamine N-methyltransferase, and PEP-19 are expressed abundantly in the YMT_02 treated group. Especially, PEP-19 is a neuron-specific protein, which inhibits apoptotic processes in neuronal cell. On the other hand, transcripts of RAB15, glutamate receptor subunit 2 and CDK 108 are abundant in control group. Besides, neuronal genes involved in neuronal death or neurodegeneration such as neuronal-pentraxin and spectrin are abundantly expressed in control group. Additionally, the YMT_02 shows an anti oxidative effect in the PC12 cell. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the memory-enhancing effect of herbal extracts YMT_02, for example, anti-apoptotic, anti-oxidative, and neuroprotective effects.

  • PDF

아밀로이드 베타로 유도된 신경세포 사멸에 대한 PineXol®의 보호효과 (Protective Effect of PineXol® against Amyloid-β-induced Cell Death)

  • 한경훈;이승희;박광성;송관영;김정희;박은국;한성희
    • 한국식품영양학회지
    • /
    • 제30권6호
    • /
    • pp.1279-1285
    • /
    • 2017
  • $Amyloid-{\beta}$ protein ($A{\beta}$) is known to increase free radical production in neuronal cells, leading to cell death by oxidative stress. The purpose of this study was to evaluate the protective effects of $PineXol^{(R)}$ on $A{\beta}_{25-35}$ induced neuronal cell death. Rat pheochromocytoma (PC-12) cells were pre-treated with $100{\mu}g/mL$ of $PineXol^{(R)}$ for 2 h. The cells were exposed to single dose of $30{\mu}M$ $A{\beta}_{25-35}$ for 24 h. Cell death was assessed by a cell count kit-8 (CCK-8) assay, lactate and dehydrogenase (LDH) release assay. An Apoptotic process was analyzed by a protein expression of the Bcl-2 family using western blotting. Cell viability increased in PC-12 cells treated with both $A{\beta}_{25-35}$ and $PineXol^{(R)}$, compared to the control group. $PineXol^{(R)}$ induced a decrease of the Bcl-2 protein expression (p<0.05), while Bax and Sod1 increased (p<0.05), indicating attenuation of $A{\beta}_{25-35}$ induced apoptosis. These results suggest that $PineXol^{(R)}$ may be a good candidate for the prevention of Alzheimer's disease(AD).