• Title/Summary/Keyword: apoptotic cells

Search Result 2,157, Processing Time 0.03 seconds

Anti-proliferative Effect of Tetra-arsenic Oxide (TetraAs®) in Human Gastric Cancer Cells in Vitro

  • Chung, Won-Heui;Koo, Hye-Jin;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.305-309
    • /
    • 2007
  • Arsenic compounds have been used to treat various diseases including cancer in oriental medicine. Arsenic trioxide ($As_2O_3,\;Trisenox^{(R)}$) has been used for the treatment of leukemia and its anti-solid tumor activity has also been reported recently. Tetra-arsenic oxide ($As_4O_6,\;TetraAs^{(R)}$) is a newly developed arsenic compound which has shown an anticancer activity in some human cancer cell lines. The purpose of this study was to evaluate the anti-gastric cancer potential of TetraAs and to search for an agent with synergistic interaction with TetraAs against human gastric cancers. We analysed anti-proliferative effect of TetraAs when given alone and in combination with other chemotherapeutic agents such as 5-FU, paclitaxel, and cisplatin in SNU-216, a human gastric cancer cell line. The $IC_{50}$ of these 4 anti-cancer drugs ranged from 5.8 nM to $7.5\;{\mu}M$ with a potency rank of order paclitaxel>TetraAs>cisplatin>5-FU. TetraAs showed 10-fold greater potency than 5-FU and cisplatin at the same effect level of $IC_{50}$. TetraAs+5-FU and TetraAs+paclitaxel showed synergistic and additive interaction, respectively. On the other hand, TetraAs with cisplatin group appeared to be strongly antagonistic. Apoptotic population was measured and compared between single and combination treatment. The apoptotic cells for the combination of TetraAs+5-FU showed significant increase compared to single TetraAs treatment. On the contrary, TetraAs+cisplatin showed less apoptotic cells compared to TetraAs or cisplatin alone treatment. Overall, our results indicate that TetraAs can be effectively combined with 5-FU or paclitaxel, but not with cisplatin for synergistic anti-cancer effect, which warrants further evaluation using in vivo models.

Characterization of Dopaminergic Neuronal Cell Death Induced by either N-Methyl-4-Phenylpyridinium of 6-hydroxydopamine (N-메칠-4-페닐피리디니움 및 6-히드록시도파민으로 유도된 도파민계 신경세포 사멸 기작의 규명)

  • O, Yeong-Jun;Choi, Won-Seok
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.86-93
    • /
    • 1997
  • Even though both N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine have been widely used to establish the experimental model for dopaminergic neuronal ce ll death. mechanisms underlying this phenomenon have not been firmly explored. To investigate how these dopaminergic neurotoxins induce neuronal cell death, murine dopaminergic neuronal cell line, MN9D cells were treated with various concentration of either 6-hydroxydopamine or active form of MPTP, N methyl-4-phenylpyridinium (MPP$^+$). Treatment of cells with 5-100 uM 6-hydroxydopamine resulted in apoptotic cell death whereas cell death induced by 5~50 uM MPP$^+$ was not demonstrated typical apoptotic characteristics such as cell shrinkage, apoptotic body and nuclear condensation. Cell death induced by 6-hydroxydopamine was partially blocked in the presence of antioxidants including soluble form of vitamin E or desferrioxamine suggesting that generation of oxidative stress may be associated with 6-hydroxydopamine-induced cell death in MN9D cells. In contrast, MPP$^+$-induced cell death was not blocked by treatment with any of antioxidants tested. As previously demonstrated that MPP$^+$ caused metabolic alterations such as glucose metabolism, removal of glucose from the medium partially inhibited MPP$^+$-induced cell death suggesting excessive cycles of glycolysis may be associated with MPP$^+$-induced cell death. Taken together, these studies demonstrate that two types of dopaminergic neurotoxins recruit distinct neuronal cell death pathways.

  • PDF

Anticancer Activity of Periplanetasin-5, an Antimicrobial Peptide from the Cockroach Periplaneta americana

  • Kim, In-Woo;Choi, Ra-Yeong;Lee, Joon Ha;Seo, Minchul;Lee, Hwa Jeong;Kim, Mi-Ae;Kim, Seong Hyun;Kim, Iksoo;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1343-1349
    • /
    • 2021
  • Cockroaches live in places where various pathogens exist and thus are more likely to use antimicrobial compounds to defend against pathogen intrusions. We previously performed an in silico analysis of the Periplaneta americana transcriptome and detected periplanetasin-5 using an in silico antimicrobial peptide prediction method. In this study, we investigated whether periplanetasin-5 has anticancer activity against the human leukemia cell line K562. Cell growth and survival of K562 cells treated with periplanetasin-5 were decreased in a dose-dependent manner. By using flow cytometric analysis, acridine orange/ethidium bromide (AO/EB) staining and DNA fragmentation, we found that periplanetasin-5 induced apoptotic and necrotic cell death in leukemia cells. In addition, these events were associated with increased levels of the pro-apoptotic proteins Fas and cytochrome c and reduced levels of the anti-apoptotic protein Bcl-2. Periplanetasin-5 induces the cleavage of pro-caspase-9, pro-caspase-8, pro-caspase-3, and poly (ADP-ribose) polymerase (PARP). The above data suggest that periplanetasin-5 induces apoptosis via both the intrinsic and extrinsic pathways. Moreover, caspase-related apoptosis was further confirmed by using the caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK), which reversed the periplanetasin-5-induced reduction in cell viability. In conclusion, periplanetasin-5 caused apoptosis in leukemia cells, suggesting its potential utility as an anticancer therapeutic agent.

Magnetic-activated cell sorting improves high-quality spermatozoa in bovine semen

  • de Assumpcao, Teresinha Ines;Severo, Neimar Correa;Zandonaide, Joao Pedro Brandao;Macedo, Gustavo Guerino
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.91-98
    • /
    • 2021
  • The objective of this study was to establish a selection process for high quality sperm in bovine semen using sperm separation by magnetic activation (MACS). For this, semen from 21 Nellore bulls was collected using an artificial vagina. To guarantee the presence of pathologies in the ejaculate, animals previously declassified in four consecutive spermiogram were used. Semen was analyzed in five statuses: (1) fresh semen (fresh); (2) density gradient centrifugation (DGC), percoll column; (3) non-apoptotic fraction after separation by MACS (MAC); (4) apoptotic fraction from the separation (MACPOOR); and (5) MAC followed by DGC (MACDGC). Using a computerized analysis system (CASA), motility was measured. The sperm morphology was evaluated by phase contrast, and the supravital test was completed with eosin/nigrosin staining. For DGC, 20 × 106 cells were used in a gradient of 90% and 45% percoll. MACS used 10 × 106 cells with 20 μL of nanoparticles attached to annexin V, and filtered through the MiniMACS magnetic separation column. Membrane integrity was assessed with SYBR-14/IP and mitochondrial potential with JC-1 by flow cytometry. Processing sperm by MACDGC, was more effective in obtaining samples with high quality sperm, verified by the total of abnormalities in the samples: 35.04 ± 2.29%, 21.50 ± 1.47%, 17.30 ± 1.10%, 30.68 ± 1.94% and 10.50 ± 1.46%, respectively for fresh, DGC, MAC, MACPOOR, and MACDGC. The subpopulation of non-apoptotic sperm had a high number of live cells (82.65%), membrane integrity (56.60%) and mitochondrial potential (83.98%) (p < 0.05). These findings suggest that this nanotechnological method, that uses nanoparticles, is efficient in the production of high-quality semen samples for assisted reproduction procedures in cattle.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Mak ino in Human Leuk emia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Eun Jung Ahn;Chul Hwan Kim;Jin-Woo Jeong;Buyng Su Hwang;Min-Jeong Seo;Kyung-Min Choi;Su Young Shin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.77-77
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer mechanisms are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins (XIAP, cIAP-1, survivin), depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

  • PDF

Capsaicin induced apoptosis and the enhanced anticancer effect of anticancer drugs in cancer cells (종양세포에서의 capsaicin에 의한 apoptosis 유도와 항암제의 항암효과의 증가)

  • Kim, Sun Young;Lee, You Jin;Park, Eun Hye;Yi, Ho Keun;Jo, Dae Sun;Kim, Jung Soo;Hwang, Pyoung Han
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.3
    • /
    • pp.307-314
    • /
    • 2008
  • Purpose : Capsaicin, the major pungent ingredient in red pepper, has long been used in spices and food additives. It has been recently shown to induce apoptosis in several cell lines through a not well known mechanism. The aim of this study was to investigate the apoptosis-inducing effect of capsaicin on gastric cancer cells, and to provide valuable information concerning the application of capsaicin for therapeutic purposes. Methods : Cultured SNU-668 cells were treated with capsaicin. We analyzed cell survival by trypan blue and crystal violet analysis, cell cytotoxicity by MTT assay, apoptosis by nuclear condensation and DNA fragmentation, bcl-2 and bax mRNA expression by RT-PCR, and the expression of apoptosis related proteins by Western immunoblot analysis. In order to assess whether the growth inhibitory effect of anticancer drugs is enhanced by capsaicin, we investigated the effects of cell cytotoxicity and the expression of apoptosis related proteins of etoposide and adriamycin treated with capsaicin in cells. Results : Capsaicin inhibited growth of SNU-668 cells in a dose-dependent manner. This inhibitory effect of capsaicin on cell growth was mainly due to the induction of apoptosis as evidenced by DNA fragmentation, nuclear condensation and the expression of apoptosis related proteins. Furthermore, capsaicin prominently reduced the ratio of anti-apoptotic Bcl-2 to pro-apoptotic Bax and consequently increased caspase-3 activity. The cells treated with capsaicin were more sensitive to death induced by etoposide and adriamycin than the cells without capsaicin. Conclusion : These results demonstrate that capsaicin efficiently induced apoptosis in SNU-668 cells through a caspase-3-dependent mechanism and sensitizes cancer cells to anticancer drugs toward apoptotic cell death, which may contribute to its anticancer effect and chemosensitizer function against gastric cancer.

Changes of testosterone production in adult mouse testis and serum after wholebody irradiation

  • Chun, Ki-Jung;Kim, Jihyang;Kim, Woo-Jung;Kim, Jin-Kyu;Kim, Bonghee;Yoon, Yong-Dal
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.178-179
    • /
    • 2003
  • The testis is composed of four cell types like supporting cells, steroid-producing cells, connective tissue cells and germ cells. Apoptosis is a common phenomenon during spormatogenesis. Apoptosis of germ cells can also be induced by exposure to radiation. Previous studies have shown that most types of germ cells are rather radiosensitive while somatic cells in testis are much more radio-resistant. The somatic cells in testis are divided to mainly Sertoli and Leydig cells. Though somatic cells are more radio-resistant than germ cells, radiation can induce the impairment of their function. This damaged function of somatic cells may accelerates degeneration of germ cell indirectly. Tn the present study, we have examined the apoptotic effect of mouse testis and irradiation effect of steroidogenesis of Leydig cells after irradiation.

  • PDF

Study of Signaling Pathway on Apoptotic Cell Death Induced by Extract of Ailanthus altissima in Human Jurkat Lymphocytes (저근백피(樗根白皮) 추출물에 의한 급성 림프성 백혈병 Jurkat Lymphocytes의 세포고사 유도 및 신호기전 연구)

  • Lee, Ki Ouk;Kim, Ae Wha;Lim, Kyu Sang;Yun, Young Gab
    • Herbal Formula Science
    • /
    • v.25 no.3
    • /
    • pp.349-362
    • /
    • 2017
  • Objectives : We investigated whether the components of Ailanthus altissima induced apoptotic cell death in Jurkat acute lymphoblastic leukemia (ALL) cells. Methods : Regulation of cell proliferation is a complex process involving the regulated expression and/or modification of discrete gene products, which control transition between different stages of the cell cycle. Results : Upon treatments with Ailanthus altissima, the concentration-dependent inhibitions of cell viability were observed as compared to untreated control group. The capability of Ailanthus altissima to induce apoptosis was associated with proteolytic cleavage of specific target proteins such as poly(ADP-ribose)polymerase (PARP) and beta-catenin proteins suggesting the possible involvement of caspases. Ailanthus altissima also caused apoptosis as measured by cell morphology and DNA fragmentation. Conclusions : These results indicate that the increase of apoptotic cell death by Ailanthus altissima may be due to the inhibition of cell cycle in human Jurkat lymphocytes. Conclusively, these current and further findings will provide novel approaches to understanding and treating major diseases.

Receptor activator of nuclear factor-κB ligand in T cells and dendritic cells communication

  • Nam, Sun-Young;Jeong, Hyun-Ja
    • CELLMED
    • /
    • v.3 no.1
    • /
    • pp.3.1-3.3
    • /
    • 2013
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL), a member of the tumor necrosis factor ligand family, has extensive functions beyond osteoclast development. RANKL is expressed in many immune cells such as osteoblasts, osteocytes, marrow stromal cells, activated T cells, synovial cells, keratinocytes, and mammary gland epithelial cells as well as in various tissues. The ligation of RANK by RANKL promotes dendritic cells (DCs) survival through prosurvival signals and the up-regulation of the anti-apoptotic proteins Bcl-2 and Bcl-$x_L$ and plays a crucial role in DCs-mediated Th1 differentiation. Therefore, RANKL plays an important role in the regulation of DCs/T cells-mediated specific immunity. This review will briefly inform our current understanding of the role of RANKL signaling in T cells-DCs communication in the immune system.

Effect of Nardostachyos Rhizoma on Apoptosis, Differentiation and Proliferation in HL-60 cells

  • Ju Sung-Min;Lee Jun;Choi Ho-Seung;Yoon Sang-Hak;Kim Sung-Hoon;Jeon Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.163-170
    • /
    • 2006
  • Nardostachyos Rhizoma (N. Rhizoma) belonging to the family Valerianaceae has been anti-arrhythmic effect, and sedation to the central nerve and a smooth muscle. We reported that the water extract of N. Rhizoma induced apoptotic cell death and differentiation in human promyelocytic leukemia (HL-60) cells. Cytotoxicity of N. Rhizoma was detected only in HL-60 cells (IC50 is about 200 ${\mu}g/ml$). The cytotoxic activity of N. Rhizoma in HL-60 cells was increased in a dose-dependent manner. We used several measures of apoptosis to determine whether these processes were involved in N. Rhizoma-induced apoptotic cell death. The high-dose (200 ${\mu}g/ml$) treatment of N. Rhizoma to HL-60 cells showed cell shrinkage, cell membrane blobbing, apoptotic bodies, and the fragmentation of DNA, suggesting that these cells underwent apoptosis. Treatment of HL-60 cells with N. Rhizoma time-dependently induced activation of caspase-3, caspase-8, and caspase-9 and proteolytic cleavage of poly(ADP-ribose) polymerase. Also, we investigated the effect of N. Rhizoma on cellular differentiation and proliferation in HL-60 cells. Differentiation and proliferation of HL-60 cells was determined through expression of CD11b and CD14 surface antigens using flow cytometry and nitroblue tetrazolium (NBT) assay, and through analysis of cell cycle using propidium iodide assay, respectively. N. Rhizoma induced the differentiation of HL-60 at the low-dose (100 ${\mu}g/ml$) treatment, as shown by increased expression of differentiation surface antigen CD11b, but not CDl4 and increased reducing activity of NBT. When HL-60 cells were treated with N. Rhizoma at concentration of $50{\mu}g/ml\;and\;100{\mu}g/ml$, NBT-reducing activities induced approximately 1.5-fold and 20.0-fold as compared with the control. In contrast, HL-60 cells treated with the N. Rhizoma-ATRA combination showed markedly elevated levels of 26.3-fold at $50{\mu}g/ml$ N. Rhizoma-0.1 ${\mu}M$ ATRA combination and 27.5-fold at 50 ${\mu}g/ml$ N. Rhizoma-0.2 ${\mu}M$ ATRA combination than when treated with N. Rhizoma alone or ATRA alone. It may be that N. Rhizoma plays important roles in synergy with ATRA during differentiation of HL-60 cells. DNA flow-cytometry indicated that N. Rhizoma markedly induced a G1 phase arrest of HL-60 cells. N. Rhizoma-treated HL-60 cells increased the cell population in G1 phase from 32.71% to 42.26%, whereas cell population in G2/M and S phases decreased from 23.61% to 10.33% and from 37.78% to 33.98%, respectively. We examined the change in the $p21^{WAF1/Cip1}\;and\;p27^{Kip1}$ proteins, which are the CKIs related with the G1 phase arrest. The expression of the CDK inhibitor $p27^{Kip1},\;but\;not\;p21^{WAF1/Cip1}$ were markedly increased by N. Rhizoma. Taken together, these results demonstrated that N. Rhizoma induces apoptotic cell death through activation of caspase-3, and potently inhibits the proliferation of HL-60 cells via the G1 phase cell cycle arrest in association with $p27^{Kip1}$ and granulocytic differentiation induction .