• Title/Summary/Keyword: apoptotic cells

Search Result 2,157, Processing Time 0.031 seconds

Effects of epigallocatechin gallate on $CoCl_2-induced$ apoptosis in PC12 cells (PC12 세포에서 $CoCl_2$ 유발 세포자멸사에 대한 epigallocatechin-gallate의 역할)

  • Mo, Hyun-Chul;Choi, Nam-Ki;Kim, Seon-Mi;Kim, Won-Jae;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.13-24
    • /
    • 2006
  • Neuronal apoptotic events, consequently resulting in neuronal cell death, are occurred in hypoxic/ischemic condition. This cell death has been shown to be accompanied with the production of reactive oxygen species (ROS), which can attack cellular components such as nucleic acids, proteins and phospholipid. However, the underlying mechanisms of apoptosis induced in hypoxic/ischemic condition and its treatment methods are unsettled. Cobalt chloride $(CoCl_2)$ has been known to mimic hypoxic condition including the production of ROS. Epigallocatechin gallate (EGCG), a green tea polyphenol, has diverse pharmacologial activities in cell growth and death. This study was aimed to investigate the apoptotic mechanism by $CoCL_2$ and effects of EGCG on $CoCl_2-induced$ apoptosis in PC12 cells. Administration of $CoCl_2$ decreased cell survival in dose- and time-dependent manners and induced genomic DNA fragmentation. Treatment with $100{\mu}M$ EGCG for 30 min before PC12 cells were exposed to $150{\mu}M$ $CoCl_2$, being resulted in the cell viability and DNA fragmentation being rescued. $CoCl_2$ caused morphologic changes such as cell swelling and condensed nuclei whereas EGCG attenuated morphologic changes by $CoCl_2$. EGCG suppressed the apoptotic peak and a loss of ${\Delta}{\psi}_m$ induced by $CoCl_2$. $CoCl_2$ decreased Bcl-2 expression but Bax expression was not changed in $CoCl_2$- treated cells. EGCG attenuated the Bcl-2 underexpression by $CoCl_2$. $CoCl_2$ augumented the cytochrome c release from mitochondria into cytoplasm and increased caspase-8, -9 and caspase-3 activity a marker of the apoptotic executing stage. EGCG ameliorated the incruement in caspase-8, -9 and -3 activity, and cytochrome c release by $CoCl_2$ NAC (N-acetyl-cysteine), a scavenger of ROS, attenuated $CoCl_2-induced$ apoptosis in consistent with those of EGCG. These results suggest that $CoCl_2$ induces apoptotic cell death through both mitochondria- and death receptor-dependent pathway and EGCG has neuroprotective effects against $CoCl_2-induced$ apoptosis in PC12 cells.

  • PDF

Differential Effects of TNF-${\alpha}$ on the Survival and Apoptosis of Human Granulocytes and the Human Myeloid Leukemia Cell Line

  • Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.118-123
    • /
    • 2013
  • Tumor necrosis factor-alpha (TNF-${\alpha}$) is a proinflammatory cytokine that mediates the inflammatory response and immune functions, and modulates the proliferation, differentiation and cell death of cancer cells. The differential functions of TNF-${\alpha}$ in various human cells due to the formation of different stimulating pathway upon the binding of TNF-${\alpha}$ to its receptors. In the present study, we examined the different effects of TNF-${\alpha}$ on the survival and apoptosis between normal granulocytes and human myeloid leukemia HL-60 cells. Although TNF-${\alpha}$ did not affect on the constitutive apoptosis of granulocytes, TNF-${\alpha}$ strongly induced the apoptosis of HL-60 cells in a dose- and a time-dependent manner. TNF-${\alpha}$-induced apoptosis was occurred via the activation of caspase 8, caspase 9 and caspase 3/7 and the induction of ROS production in HL-60 cells. Also, BAY-11-7085, a NF-${\kappa}B$ inhibitor, blocked the TNF-${\alpha}$-induced apoptosis in HL-60 cells. NF-${\kappa}B$ may be involved in TNF-${\alpha}$-induced apoptotic signaling pathway in HL-60 cells. These results suggest that TNF-${\alpha}$ activates apoptotic pathways and its process depends on cell type and many cellular factors. A better understanding of the differential effect of TNF-${\alpha}$ on cell apoptosis and survival may provide important information that can be used to elucidate the specific inhibitory effect of TNF-${\alpha}$ on the cancer dis.

Effect of Cyclin D2 on Cell Proliferation in T-47D Breast Cancer Cells (인체 유방암 세포에서 과다발현 시킨 Cyclin D2의 영향에 대한 연구)

  • 김현준;이근수;전상학;공구
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Three D-type cyelins (D1, D2, and D3) are expressed in G1 phase of the cell cyele and have been implicated in cell transformation and neoplasia in human and mouse. Cyclin D1 overexpression or amplification was described in various human cancers. However, there is controversy about the role of cyclin D2 in cell cyele progression and human carcinogenesis. Specially, loss of cyelin D2 is involved in a vital tumor suppressor function in normal breast tissue, and that its loss may be related to tumorigenesis. The author examined to effect over-expression of cyclin D2 on the cell proliferation, apoptosis, and cell cycle using cyclin D2 transfected stable T47D breast cancer cells to investigate whether cyclinD2 functions as a positive regulator or negative regulator in cell proliferation. Overexpression of cyclin D2 led to the suppression of cell growth in cyclin D2 transfected T47D in both in its expression level and a time dependent manner with up to 50% reduction of cell growth at 72 hours. Therefore, the authors performed the cell cycle phase analysis using the flow cytometry to investigate the effect of cyclin D2 on the cell cycle phase in cyclin D2 transfected stable T47D cells. The flow cytometry analysis revealed increased sub G0 phase in cyclin D2 transfeted cells up to 23% at 72 hours. To confirm these results induced by overexpression of cyclinD2, the apoptotic bodies were counted in control and cyclin D2 transfected T47 cells. There are markedly increases of apoptotic bodies in cyclin D2-transfected cells up to 18%. These results suggested that Cyclin D2 suppresses the cell proliferation in breast cancers cells via the induction of apotosis.

  • PDF

Enhancement of Arsenic Trioxide ($As_2O_3$)-Mediated Apoptosis Using Berberine in Human Neuroblastoma SH-SY5Y Cells

  • Kim, Dae-Won;Ahan, Song-Ho;Kim, Tae-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.5
    • /
    • pp.392-399
    • /
    • 2007
  • Objective : Arsenic trioxide ($As_2O_3$) has been used as an anticancer agent in traditional Chinese medicine for thousand years and berberine is an isoquinoline alkaloid present that has indicated significant antimicrobial activity. We have examined the combined anticancer effects of $As_2O_3$ and berberine against the human neuroblastoma (HNB) SH-SY5Y cells in vitro, and to elucidate underlying molecular mechanism. Methods : HNB SH-SY5Y cells were treated with $2\;{\mu}M\;As_2O_3$ and $75\;{\mu}g/ml$ berberine, and their survival, cell death mechanism as well as synergistic cytotoxic effects were estimated by using MTT assay, DAPI staining, agarose gel electrophoresis, flow cytometric analysis, and western blot analysis. Results : The combined treatment of two drugs also markedly decreased cell viability. The cytotoxic effects of two drugs were revealed as apoptosis characterized by chromatin condensation, DNA fragmentation, and the loss of mitochondrial membrane potential. The apoptotic cytotoxicity was accompanied by activation of caspase-3 protease as well as decreased the expression of Bcl-2, Bid, and Bcl-x/L. In addition, the cells treated with combination of two drugs also showed significantly increased intracellular reactive oxygen species levels and lipid peroxidation compared to cells $As_2O_3$or berberine only. Conclusion : Combined treatment of $As_2O_3$ with berberine induced activation of apoptotic signaling pathways in HNB SH-SY5Y cells. These results suggest that the possibility of the combined treatment of two chemotherapeutic agents with low concentration improving cytotoxic effect for cancer cells with minimal side effects.

Apoptotic Effects of psiRNA-STAT3 on 4T1 Breast Cancer Cells in Vitro

  • Zhou, Yue;Tian, Lin;Zhang, Ying-Chao;Guo, Bao-Feng;Zhou, Qing-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6977-6982
    • /
    • 2014
  • Background: The aim of this study was to investigate the effect of a Lipofectamine2000 (Life2000) Transfection Reagent transfected psiRNA-STAT3 plasmid on 4T1 breast cancer cells. Materials and Methods: MTT was used to detect the cell proliferation of breast cancer 4T1 cells at different periods (0h, 6h, 8h, 10h); the cell cycle was assessed by flow cytometry; variation of apoptosis and mitochondrial membrane potential was observed under a fluorescence microscope; immunohistochemical staining was used to determine the expression of caspase-3 and cyclin-D1 protein. Results: An obvious effect of inhibition to 4T1 cancer cells could be observed at 8h after the psiRNA-STAT3 was transfected. Typical alterations of apoptotic morphological features were visible in the psiRNA-STAT3 treatment group. Mitochondrial membrane potential decreased significantly, the number of cells was increased in G0/G1 phase, and the number of cells was decreased in S phase, and the data were statistically significant (p<0.05), compared with the Scramble and Mock groups. Expression of caspase-3 protein was increased significantly, while that of cyclin D1 was significantly decreased. Conclusions: Life2000 transfected psiRNA-STAT3 plasmid can inhibit 4T1 tumor cell proliferation and promote apoptosis of 4T1 tumor cells, which process depends on the regulation of expression of cyclin D1 and caspase-3 protein.

Induction of the apoptosis of HL -60 leukemia cells by Scytosiphon lomentaria

  • Kim, Sang-Chul;Park, Soo-Young;Hyoun, Jae-Hee;Kang, Ji-Hoon;Lee, Young-Ki;Park, Deok-Bae;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.81-81
    • /
    • 2003
  • The present study was taken to examine the inhibitory effect of extracts of Scytosiphon lomentaria, a marine alga growing in Jeju Island, on the growth of cancer cells and to develop an anti-cancer agent using components of S. lomemtaria. The effect was observed by the measurement of metabolic activity using colorimetric 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. In results, crude extract of this alga markedly inhibited the growth of leukemia cell lines such as HL-60 and KG-1, but could scarcely inhibit the growth of normal cells (HEL299) and adenocarcinoma cells (SNU-16 and HCT-I5). When HL-60 cells were treated with the extract, DNA fragmentation and the increase of proportion of sub-G1 hypodiploid cells were observed. Therefore, the inhibitory effect of S. lomemtaria on the growth of HL-60 cells seems to arise from the induction of apoptosis. In order to understand the mechanism of apoptosis inducton by S. lomemtaria, we examined the changes of Bcl-2 and Bax expression. The extract reduced Bcl-2, an anti-apoptotic protein, but increased Bax, a pro-apoptotic protein in a dose-dependent manner. When we examined the activation of caspase-3, an effector of apoptosis, the expression of active form(19 kDa) of caspase-3 was increased and the increase of their activities was demonstrated by the cleavage of poly(ADP-ribose)polymerase, a substrate of caspase-3, to 85 kDa. The results indicate that extract of S. lomentaria induces the apoptosis of HL-60 cells via the down-regulation of Bc1-2 and the activation of caspases.

  • PDF

Saponins from Rubus parvifolius L. Induce Apoptosis in Human Chronic Myeloid Leukemia Cells through AMPK Activation and STAT3 Inhibition

  • Ge, Yu-Qing;Xu, Xiao-Feng;Yang, Bo;Chen, Zhe;Cheng, Ru-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5455-5461
    • /
    • 2014
  • Background: Saponins are a major active component for the traditional Chinese medicine, Rubus parvifolius L., which has shown clear antitumor activities. However, the specific effects and mechanisms of saponins of Rubus parvifolius L. (SRP) remain unclear with regard to human chronic myeloid leukemia cells. The aim of this study was to investigate inhibition of proliferation and apoptosis induction effects of SRP in K562 cells and further elucidate its regulatory mechanisms. Materials and Methods: K562 cells were treated with different concentrations of SRP and MTT assays were performed to determine cell viability. Apoptosis induction by SRP was determined with FACS and DAPI staining analysis. Western blotting was used to detect expression of apoptosis and survival related genes. Specific inhibitors were added to confirm roles of STAT3 and AMPK pathways in SRP induction of apoptosis. Results: Our results indicated that SRP exhibited obvious inhibitory effects on the growth of K562 cells, and significantly induced apoptosis. Cleavage of pro-apoptotic proteins was dramatically increased after SRP exposure. SRP treatment also increased the activities of AMPK and JNK pathways, and inhibited the phosphorylation expression level of STAT3 in K562 cells. Inhibition of the AMPK pathway blocked the activation of JNK by SRP, indicating that SRP regulated the expression of JNK dependent oon the AMPK pathway. Furthermore, inhibition of the latter significantly conferred resistance to SRP pro-apoptotic activity, suggesting involvement of the AMPK pathway in induction of apoptosis. Pretreatment with a STAT3 inhibitor also augmented SRP induced growth inhibition and cell apoptosis, further confirming roles of the STAT3 pathway after SRP treatment. Conclusions: Our results demonstrated that SRP induce cell apoptosis through AMPK activation and STAT3 inhibition in K562 cells. This suggests the possibility of further developing SRP as an alternative treatment option, or perhaps using it as adjuvant chemotherapeutic agent for chronic myeloid leukemia therapy.

Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer Cells

  • Park, Jin-Ah;Na, Han-Heom;Jin, Hyeon-Ok;Kim, Keun-Cheol
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.884-892
    • /
    • 2019
  • Piperlongumine (PL), a natural alkaloid compound isolated from long pepper (Piper longum), can selectively kill cancer cells, but not normal cells, by accumulation of reactive oxygen species (ROS). The objective of this study was to investigate functional roles of expression of SETDB1 and FosB during PL treatment in MCF7 breast cancer cells. PL downregulates SETDB1 expression, and decreased SETDB1 expression enhanced caspase 9 dependent-PARP cleavage during PL-induced cell death. PL treatment generated ROS. ROS inhibitor NAC (N-acetyl cysteine) recovered SETDB1 expression decreased by PL. Decreased SETDB1 expression induced transcriptional activity of FosB during PL treatment. PARP cleavage and positive annexin V level were increased during PL treatment with FosB overexpression whereas PARP cleavage and positive annexin V level were decreased during PL treatment with siFosB transfection, implying that FosB might be a pro-apoptotic protein for induction of cell death in PL-treated MCF7 breast cancer cells. PL induced cell death in A549 lung cancer cells, but molecular changes involved in the induction of these cell deaths might be different. These results suggest that SETDB1 mediated FosB expression may induce cell death in PL-treated MCF7 breast cancer cells.

Decursin from Angelica gigas Nakai Promotes Cytotoxicity and Induces Apoptosis in THP-1 cells, a Human Acute Monocytic Leukemia (당귀로부터 정제한 Decursin의 인간 급성 단핵구성 백혈병 세포(THP-1 cells)의 세포 독성 및 Apoptosis에 미치는 영향)

  • Kim, Nam-Seok;Jeong, Seung-Il;Kim, Jong-Seok;Oh, Mi-Jin;Oh, Chan-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.3
    • /
    • pp.197-203
    • /
    • 2016
  • Decursin is a major component of the root of Angelica gigas(Umbelliferae), which has been traditionally used in Korea as a tonic and to treat anemia, hemiplegia, and women's diseases. The objective of this study is to identify the anti-cancer mechanism induced by decursin on apoptosis of human leukemia and lymphoma cells. Cytotoxicity of decursin on U937, HL-60, MOLT-4, THP-1 cells showed the significant effects. First of all, $IC_{50}$ of decursin on four cell lines was 27.1, 32.4, 17.4, $15.1{\mu}M$, respectively. So $IC_{50}$ in THP-1 cells was the smallest among 4 cell lines treated with decursin($15.1{\mu}M$). In order to understand the apoptosis-mechanism by decursin, we examined the gene expression of bcl-2(anti-apoptotic), bax(pro-apoptotic) and p53(tumor suppressor)after treating the THP-1 cells with decursin(10, 50 and $100{\mu}M$). It was found bcl-2 gene was decreased dose dependently, the expression level of bax gene of THP-1 cells treated with $100{\mu}M$ of decursin was about 3 times higher than those of control, and p53 gene was increased In the same concentration($100{\mu}M$), p53 gene was increased dose dependent manner. In protein express, bcl-2 and p53 protein showed a tendency to decrease. bax was increased about 4 fold. Therefore decursin is a useful chemotherapeutic agent against leukemia.