• Title/Summary/Keyword: apoptotic cells

Search Result 2,157, Processing Time 0.026 seconds

Antimicrobial and Anticancer Activity of Korean Traditional Soy Sauce and Paste with Chopi (초피첨가 전통장류의 항균 및 항암활성)

  • Kim, Keun-Ki;Park, Hyean-Cheal;Son, Hong-Joo;Kim, Yong-Gyun;Lee, Sang-Mong;Choi, In-Soo;Choi, Young-Whan;Shin, Teak-Soon
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1121-1128
    • /
    • 2007
  • The fruits of Zanthoxylum piperitum are known as having various physiology vitality, and the abstraction ingredient of the pericarp is also known as having strong antibiotic activities against various bacteria. Therefore, this study was carried out to estimate the effect of physiology vitality when the abstraction ingredient of Z. piperitum was added in soy sauce(Chopi-kanjang) and soybean paste(Chopi-doenjang). For the antibiotic activity against the pathogens of sitotoxism such as Staphylococcus aureus, Salmonella typhimurium, Vibrio parahemolyticus, Escherichia coli 0157:H7, the extracts of the Chopi-kanjang was added 1%, 2%, 4% pericarp of Z. piperitum in the manufacturing process of soy source. According to the results, the growth of E. coli 0157:H7 and V. parahemolyticus were respectively inhibited as 70% and 50% by the Chopi-kanjang added 2% of the ingredient. For the antibiotic effects of the aforementioned Chopi-kanjang against Sal. typhimurium and Sta. aureus, the growth of those pathogens was also inhibited between 40% and 60% according to the manufacturing period of Chopi-kanjang. It was confirmed that the antibiotic activity using the mixture of the abstraction ingredient and Chopi-doenjang was lower than those of Chopi-kanjang. In order to estimate the anticancer activity using by caspase-3 activity, the mixture of the abstraction ingredient of the pericarp of Z. piperitum and Chopi-kanjang was treated to leukemia cells. According to the results, the activities of caspase-3 using the mixture added 1%, 2% and 4% of the abstraction ingredient were respectively increased as much as 4, 12, 15 times comparing with the control which was treated with the soy source only. It could be that the mixture of the abstraction ingredient of the pericarp of Z. piperitum and soy source induced apoptosis, and the mixture of the abstraction ingredient and soybean paste had no effect on the activity of caspase-3. In order to find out the death of the aforementioned cells caused by necrosis or apoptosis, DNA fragmentation in the cell was examined. U-937 cells showed apoptotic DNA fragmentation in the incubation with Chopi-kanjang extract.

Antioxidant activity of Bamboo powder and its immunoreactivity in the pig (대나무 분말의 항산화력과 돼지의 면역 활성에 미치는 영향)

  • Song, Yuno;Chu, Gyo-Moon;Jang, Sun-Hee;Goo, Ae-Jin;Ko, Yeoung-Gyu;Ha, Ji Hee;Lee, Jae-Young;Kang, Suk-Nam;Song, Young-Min;Cho, Jae-Hyeon
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.2
    • /
    • pp.111-122
    • /
    • 2014
  • The present study was designed to explore the antioxidant effect of Bamboo powder and its immunoreactivity in pigs. We investigated the functional properties of Bamboo extracts by means of measuring the contents of total polyphenols and flavonoid as well as determining ABST, DPPH radical scavenging activity, and hydroxyl radical scavenging activity and anticancer activity. The total phenolic compound and flavonoids contents of Bamboo extracts were 171.25 mg/g and 127.5 mg/g, respectively. The DPPH radical, hydroxyl radical, ABST radical scavenging activity of Bamboo extracts were 17.3%, 12.5% and 21.5%, respectively. Evidenced by MTT and cell cycle assay, Bamboo dose-dependently inhibited the cell proliferation and induced G0/G1-phase arrest in CHO cells at concentrations of 100, 250, and 500 ${\mu}g/ml$ Bamboo extracts. More than 80% of apoptotic cells were observed by staining with annexin V in 500 ${\mu}g/ml$ Bamboo-treated CHO cells, indicating that Bamboo had potent anticancer activities. Next, to investigate the effect of Bamboo on cytokine, immunoglobulin concentration, and blood compositions, flatting pigs were fed with Bamboo powder for 38 days. Flatting pigs were divided into 4 groups; basal diet (control), basal diet supplemented with 1% Bamboo powder (T1), 2% Bamboo powder (T2), and 3% Bamboo powder (T3). The level of hemoglobin increased in the all Bamboo-fed groups compared with the normal control group. In particular, platelet levels in the all Bamboo-treated groups increased by approximately 90% compared with the levels from pig on a normal control. Serum levels of immunoglobulins (IgG, IgA) in the pigs fed Bamboo powder were modestly increased, and the interferon-${\gamma}$ level also was strongly increased in 2% or 3% Bamboo-fed groups compared with the levels in control groups. Together, these results demonstrated that Bamboo extracts had an effective capacity of scavenging for ABTS, DPPH, and hydroxyl radicals and showed correlation with potent phenol and flavonoid contents, thus suggesting its antioxidant potential. Moreover, administration of Bamboo in 2~3% improved blood parameters and platelets, and especially immunity-related ones such as IgG, IgA, and interferon-${\gamma}$, leading to be potential feed additives in flatting pigs.

The Extracts from Liriope platyphylla Significantly Stimulated Insulin Secretion in the HIT-T15 Pancreatic β-Cell Line (HIT-T15 췌장세포의 인슐린분비 촉진을 유도하는 맥문동(Liriope platyphylla) 추출물의 효능 및 독성분석)

  • Kim, Ji-Ha;Kim, Ji-Eun;Lee, Yoen-Kyung;Nam, So-Hee;Her, Youn-Kyung;Jee, Seoung-Wan;Kim, Sun-Guen;Park, Da-Jung;Choi, Young-Whan;Hwang, Dae-Youn
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1027-1033
    • /
    • 2010
  • Liriope platyphylla has traditionally been used in Korea and China as a therapeutic drug for the treatment of coughing, sputum, neurodegenerative disorders, obesity, and diabetes. In an effort to assess the functions of a novel extract from Liriope platyphylla in diabetes therapy, the insulin secretion abilities of 10 extracts were screened via measurements of insulin concentration in the culture supernatant using an Insulin ELISA kit. The results of this assay showed the highest levels of insulin in the LP9M80-H treated group, followed by the LP-H, LP-M, LP-E and LP9M80-C treated groups, whereas other extracts did not induce insulin secretion in the HIT-T15 cells. However, the extracts capable of stimulating insulin secretion simultaneously evidenced high apoptotic activity as compared with other extracts. Therefore, one of these extracts, LP9M80-H, was initially selected as the optimal candidate for a therapeutic drug and its optimal concentration was determined. The results of the ELISA and MTT assay demonstrated that a concentration of approximately 100-125 ug/ml of LP9M80-H was optimal with regards to cell viability and insulin secretion in the HIT-T15 cells. These results suggest that LP9M80-H could be considered as an excellent candidate for a diabetes-therapeutic drug that could induce insulin secretion in pancreatic $\beta$-cells.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon Hae-Jeong;Baek Dong-Won;Lee Ji-Young;Nam Jae-Sung;Yun Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorhodamine123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MSP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to playa novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

Cytotoxicity, Toxicity, and Anticancer Activity of Zingiber Officinale Roscoe Against Cholangiocarcinoma

  • Plengsuriyakarn, Tullayakorn;Viyanant, Vithoon;Eursitthichai, Veerachai;Tesana, Smarn;Chaijaroenkul, Wanna;Itharat, Arunporn;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4597-4606
    • /
    • 2012
  • Cholangiocarcinoma (CCA) is an uncommon adenocarcinoma which arises from the epithelial cells of the bile ducts. The aim of the study was to investigate the cytotoxicity, toxicity, and anticancer activity of a crude ethanolic extract of ginger (Zingiber officinale Roscoe) against CCA. Cytotoxic activity against a CCA cell line (CL-6) was assessed by calcein-AM and Hoechst 33342 assays and anti-oxidant activity was evaluated using the DPPH assay. Investigation of apoptotic activity was performed by DNA fragmentation assay and induction of genes that may be involved in the resistance of CCA to anticancer drugs (MDR1, MRP1, MRP2, and MRP3) was examined by real-time PCR. To investigate anti-CCA activity in vivo, a total of 80 OV and nitrosamine (OV/DMN)-induced CCA hamsters were fed with the ginger extract at doses of 1000, 3000, and 5000 mg/kg body weight daily or every alternate day for 30 days. Control groups consisting of 10 hamsters for each group were fed with 5-fluorouracil (positive control) or distilled water (untreated control). Median $IC_{50}$ (concentration that inhibits cell growth by 50%) values for cytotoxicity and anti-oxidant activities of the crude ethanolic extract of ginger were 10.95, 53.15, and $27.86{\mu}g/ml$, respectively. More than ten DNA fragments were visualized and up to 7-9 fold up-regulation of MDR1 and MRP3 genes was observed following exposure to the ethanolic extract of ginger. Acute and subacute toxicity tests indicated absence of any significant toxicity at the maximum dose of 5,000 mg/kg body weight given by intragastric gavage. The survival time and survival rate of the CCA-bearing hamsters were significantly prolonged compared to the control group (median of 54 vs 17 weeks). Results from these in vitro and in vivo studies thus indicate promising anticancer activity of the crude ethanolic extract of ginger against CCA with the absence of any significant toxicity. Moreover, MDR1 and MRP3 may be involved in conferring resistance of CCA to the ginger extract.

Native plants (Phellodendron amurense and Humulus japonicus) extracts act as antioxidants to support developmental competence of bovine blastocysts

  • Do, Geon-Yeop;Kim, Jin-Woo;Park, Hyo-Jin;Yoon, Seung-Bin;Park, Jae-Young;Yang, Seul-Gi;Jung, Bae Dong;Kwon, Yong-Soo;Kang, Man-Jong;Song, Bong-Seok;Kim, Sun-Uk;Chang, Kyu-Tae;Koo, Deog-Bon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1245-1252
    • /
    • 2017
  • Objective: Phellodendron amurense (P. amurense) and Humulus japonicus (H. japonicus) are closely involved in anti-oxidative response and increasing antioxidant enzymes activities. However, the effects of their extracts on development of preimplantation bovine embryos have not been investigated. Therefore, we investigated the effects of P. amurense and H. japonicus extracts on developmental competence and quality of preimplantation bovine embryos. Methods: After in vitro fertilization, bovine embryos were cultured for 7 days in Charles Rosenkrans amino acid medium supplemented with P. amurense ($0.01{\mu}g/mL$) and H. japonicus ($0.01{\mu}g/mL$). The effect of this supplementation during in vitro culture on development competence and antioxidant was investigated. Results: We observed that the blastocysts rate was significantly increased (p<0.05) in P. amurense ($28.9%{\pm}2.9%$), H. japonicus ($30.9%{\pm}1.5%$), and a mixture of P. amurense and H. japonicus ($34.8%{\pm}2.1%$) treated groups compared with the control group ($25.4%{\pm}1.6%$). We next confirmed that the intracellular levels of reactive oxygen species (ROS) were significantly decreased (p<0.01) in P. amurense and/or H. japonicus extract treated groups when compared with the control group. Our results also showed that expression of cleaved caspase-3 and apoptotic cells of blastocysts were significantly decreased (p<0.05) in bovine blastocysts derived from both P. amurense and H. japonicus extract treated embryos. Conclusion: These results suggest that proper treatment with P. amurense and H. japonicus extracts in the development of preimplantation bovine embryos improves the quality of blastocysts, which may be related to the reduction of ROS level and apoptosis.

Effects of Curcumin on Osteoclasts (파골세포에 대한 커큐민의 효과)

  • Kim, Jeong-Joong;Kim, Dong-Joo;Lee, Byung-Ki;Kim, Kwang-Jin;Lee, Myeung-Su;Lee, Jae-Hoon;Kim, Hun-Soo;Lee, Chang-Hoon;Byun, Seung-Jae;Jang, Sung-Jo;Song, Jeong-Hoon;Oh, Jae-Min;Lee, Jun-Seok;Kim, Kwang-Mee;Chun, Churl-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1566-1571
    • /
    • 2008
  • Bone is a dynamic tissue that is constantly resorbed by osteoclasts and then replaced by osteoblasts. Osteoclasts, multinucleated cells of monocyte/macrophage lineage, are responsible for bone disorders, including osteoporosis and rheumatoid arthritis. In this study, we examined the effect of the curcumin on osteoclast survival and bone resorption. We found that curcumin significantly inhibited RANKL-mediated osteoclast survival. DAPI stainingrevealed that curcumin induced the apoptotic features of osteoclasts. Although curcumin did not suppress the phosphorylation of Akt and ERK in osteoclasts treated with RANKL, curcumin induced the cleavage of pro-caspase-9 and -3 its active forms. Also, curcumin inhibited the formation of actin rings of osteoclasts. RANKL-mediated bone resorption was inhibited by the addition of curcumin. Together with the results of this study, these findings suggest that the curcumin inhibited the survival of osteoclasts by activating caspase-9 and -3 and suppressed the bone resorptive activity. Thus, curcumin may be developed as antiresorptive drugs for the treatment of bone-related disorders.

House Dust Mite Allergen Inhibits Constitutive Neutrophil Apoptosis by Cytokine Secretion via PAR2/PKCδ/p38 MAPK Pathway in Allergic Lymphocytes (알레르기 림프구에서 집먼지진드기 알러젠의 PAR2/PKCδ/p38 MAPK 경로를 통한 사이토카인 증가는 호중구의 세포고사를 억제시킨다)

  • Lee, Na Rae;Lee, Ji-Sook;Kim, In Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.188-195
    • /
    • 2016
  • Neutrophils and lymphocytes are essential inflammatory cells in the pathogenesis of allergy. In this study, we evaluated the role of house dust mite (HDM) in the interaction between allergic lymphocytes and neutrophils. The extract of Dermatophagoides pteronissinus (DP) showed a stronger anti-apoptotic impact on neutrophil apoptosis in the coculture of allergic neutrophils with allergic lymphocytes when compared with that in allergic neutrophils alone. DP increased IL-6, IL-8, MCP-1, and GM-CSF in allergic lymphocytes, and the increased cytokines were inhibited by rottlerin-an inhibitor of the protein kinase C (PKC) ${\delta}$, as well as by SB202190-a p38 MAPK inhibitor. DP activated p38 MAPK in a time-dependent manner. The activation of p38 MAPK was suppressed by PAR2i, which is a protease-activated receptor (PAR) 2 inhibitor, and rottlerin. Both aprotinin-a serine protease inhibitor-and E64-a cysteine protease inhibitor-were not effective on cytokine secretion of lymphocytes. These results, despite increased cytokines in allergic lymphocytes via DP, did not show any differences between asthma and allergic rhinitis. Molecules, including cytokines, released by DP in lymphocytes inhibited the migration of neutrophils. This finding may further elucidate the pathogenic mechanism of allergic diseases due to HDM.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon, Hae-Jeong;Baek, Dong-Won;Lee, Ji-Young;Nam, Jae-Sung;Yun, Dae-Jin
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.65-71
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorho-damine 123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to play a novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

  • PDF

Protective Effect of Platycodin D in the Acute Gastric Ulcer Induced by Ibuprofen in Rats (이부프로펜에 의해 유발된 급성 위궤양에 있어 Platycodin D의 보호효과)

  • Yu, Ri;Shin, Won-Ho;Kim, Sol;Son, Kyu-Hee;Kwak, Dong-Mi;Kim, Sang Ryong;Ryu, Si-Yun;Park, Sang-Joon
    • Journal of Veterinary Clinics
    • /
    • v.30 no.1
    • /
    • pp.5-11
    • /
    • 2013
  • Acute gastric ulcer is caused by the unbalance between cell proliferation and apoptosis in gastric mucosa. Platycodin D (PD) has been reported to have a variety of pharmacological properties, including antioxidant and antiin-flammatory effect. In the present study, we investigated the protective effect of PD on the basis of cell proliferation/apoptosis and cyclooxygenase-2 (COX-2) expression in the acute gastric ulcer induced by ibuprofen in Rats. Acute gastric damage was induced by the repeated treatment of ibuprofen (200 mg/kg) with 8 hrs interval in a day. PD was orally administrated at concentrations of 2.5 and 5 mg/kg every day for 5 days before the induction of acute gastric ulcer. Macroscopically, ibuprofen caused a significant increase in the number of lesions in the gastric mucosa. But pretreatment of PD significantly reduced ibuprofen-induced gastric lesion score and prevented excessive mucus depletion in gastric mucosa. Also, pretreatment of PD counteracted significantly Ki-67 decrease in the proliferating zone of gastric glandular portion and highly reduced or delayed apoptotic cells on TUNEL assay. In addition, COX-2 expression was increased in gastric mucosa bearing erosions or ulcers but pretreatment of PD reduced COX-2 expression in gastric lesions. These results show that pretreatment of PD has a protective effect against ibuprofen-induced gastric damage, not only by counteracting a decrease of cell proliferation, but also by inhibiting or delaying apoptosis via regulation of COX-2 within the gastric mucosa.