• Title/Summary/Keyword: apoptotic cells

Search Result 2,160, Processing Time 0.027 seconds

Injury of Neurons by Oxygen-Glucose Deprivation in Organotypic Hippocampal Slice Culture (뇌 해마조직 절편 배양에서 산소와 당 박탈에 의한 뇌신경세포 손상)

  • Chung, David Chanwook;Hong, Kyung Sik;Kang, Jihui;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1112-1117
    • /
    • 2008
  • Purpose : We intended to observe cell death and apoptotic changes in neurons in organotypic hippocampal slice cultures following oxygen-glucose deprivation (OGD), using propidium iodide (PI) uptake, Fluoro-Jade (FJ) staining, TUNEL staining and immunofluorescent staining for caspase-3. Methods : The hippocampus of 7-day-old rats was cut into $350{\mu}m$ slices. The slices were cultured for 10 d (date in vitro, DIV 10) and and exposed to OGD for 60 min at DIV 10. They were then incubated for reperfusion under normoxic conditions for an additional 48 h. Fluorescence of PI uptake was observed at predetermined intervals, and the cell death percentage was recorded. At 24 h following OGD, the slices were Cryo-cut into $15{\mu}m$ thicknesses, and Fluoro-Jade staining, TUNEL staining, and immunofluorescence staining for caspase-3 were performed. Results : 1) PI uptake was restricted to the pyramidal cell layer and DG in the slices after OGD. The fluorescent intensities of PI increased from 6 to 48 h during the reperfusion stage. The cell death percentage significantly increased time-dependently in CA1 and DG following OGD (P<0.05). 2) At 24 h after OGD, many FJ positive cells were detected in CA1 and DG. Some neurons had distinct nuclei and processes while others had fragmented nuclei and disrupted processes in CA1. TUNEL and immunofluorescent staining for caspase-3 showed increased expression of TUNEL labeling and caspase-3 in CA1 and DG at 24 h after OGD. Conclusion : The numerous dead cells in the slice cultures after OGD tended to display apoptotic changes mediated by the activation of caspase-3.

Anti-oxidative and Cytoprotective Effect of Ursodeoxycholic Acid, an Active Compound from the Bear's Gall, in Mouse Microglia (생쥐 뇌소교세포주에서 웅담추출활성성분(우르소데옥시콜린산)의 항산화 및 세포보호효과)

  • Joo, Seong-Soo;Kim, Seong-Kun;Yoo, Yeong-Min;Ryu, In-Wang;Kim, Kyung-Hoon;Lee, Do-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.452-455
    • /
    • 2006
  • The in vitro cytoprotective and anti-oxidative effects of ursodeoxycholic acid, a major active compound from bear's gall were investigated in mouse brain microglia. In the present study, we wished to scrutinize the potential role of UDCA as an anti-neurodegenerative agent in neurodegenerative disease such as Alzheimer's disease. This concept was supported by the multiple preliminary studies in which UDCA has an anti-inflammatory effect in microglial cells. In the study, we found that $7.5\;{\mu}g/mL$ UDCA was effective in the protection of cells from $H_2O_2$ damage, a reactive oxygen, and the resuIt was coincided with the anti-apoptotic effect in DAPI staining. Moreover, the metal-catalyzed oxidation study showed that UDCA has antioxidant effect as much as ascorbic acid at $50{\sim}100\;{\mu}g/mL$. In conclusion, these study results suggested that neuro-degenerative diseases such as Alzheimer's disease probably caused by over-expressed beta amyloid peptide in elderly people can be controled by UDCA through an anti-inflammatory, anti-oxidative and anti-apoptotic effect. The evidences showed in the study may be references for more in-depth in vivo and clinical studies for a candidate of anti-neurodegenerative therapy in the near future.

Euphorbiae Immifusae Sensitizes Apoptosis of TRAIL-resistant Human Gastric Adenocarcinoma AGS Cells (지금초 추출물에 의한 TRAIL 저항성 인체위암세포의 세포사멸 유도)

  • Lee, Jae-Jun; Shin, Dong-Hyuk;Park, Sang-Eun;Kim, Won-Il;Park, Dong-Il;Choi, Yung-Hyun;Hong, Sang-Hoon
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.120-128
    • /
    • 2008
  • The death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/ Apo1L is a cytokine that activates apoptosis through cell surface death receptors. TRAIL has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. Euphorbiae humifusae Wind has been used in traditional Oriental medicine as a folk remedy used for the treatment of cancer. However, the mechanism responsible for the anticancer effects of E. humifusae not clearly understood. Here, we show that treatment with subtoxic doses of water extract of E. humifusae (WEEH) in combination with TRAIL induces apoptosis in TRAIL-resistant human gastric carcinoma AGS cells. Combined treatment with WEEH and TRAIL induced chromatin condensation and sub-G1 phase DNA content. These indicators of apoptosis were correlated with the induction of caspase activity that resulted in the cleavage of poly (ADP-ribose) polymerase. Combined treatment also triggered the loss of mitochondrial membrane potential. Furthermore, co-treatment with WEEH and TRAIL down-regulated the protein levels of the anti-apoptotic proteins such as Bcl-2, Bcl-xL, XIAP and cIAP-1. Although more study will be needed to examine the detailed mechanisms, this combined treatment may offer an attractive strategy for safely treating gastric adenocarcinomas and the results provide important new insights into the possible molecular mechanisms of the anticancer activity of E. humifusae.

Neuroprotective effects of Extract of Broccoli, Cultivated in Desalinated Magma Seawater, on neuron-like SH-SY5Y cells (제주도 탈염 용암해수 재배로 제조한 브로콜리 추출물의 신경 세포 보호 효과)

  • Rhee, Jin Seol;Jang, Youn Bi;Choi, Ge Sun;Choung, Jai Jun;Kang, Seung Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.448-462
    • /
    • 2020
  • Dietary nutrition is a critical lifestyle factor that can reduce the risk of future cognitive impairments caused by dementia. Accumulating evidence suggests that dietary supplementation with Sulforaphane may help the prevention of cognitive impairments and dementia. Thus, Sulforaphane-enriched broccoli extract would hold promise to improve cognitive impairments of dementia patients. Here, we have used broccoli extracts, prepared from broccoli cultivated in Magma Seawater, to test if the broccoli extracts can be dietary supplement to improve cognitive impairments. Magma Seawater originated from Jeju Island, Korea is unique in terms of containing high concentrations of usable minerals (Zinc, Vanadium and Germanium etc.). Broccoli, grown in Magma Seawater, would contain Sulforaphane and the extra amount of usable minerals. The chemical compositions of the broccoli extracts were analyzed using LC-Q-orbitrap to detect Sulforaphane and Glucoraphanin. Analysis method based on HPLC was developed for measurement of sulforaphane levels in the broccoli extracts. We have tested if the broccoli extracts have anti-apoptotic and anti-inflammatory effects on neuron-like SH-SY5Y cells. In addition, we examined if the broccoli extracts are able to upregulate expression of synaptic plasticity-associated proteins (BDNF and phospho-CREB) and to inhibit acetylcholine esterase (AchE) activity. We have shown that the broccoli extracts inhibited the apoptotic pathway and inflammatory responses. Finally, we present evidence showing that AchE activity was inhibited by the broccoli extracts, but expression of BDNF and phospho-CREB was upregulated. Taken together, these findings suggest that the broccoli extracts from Magma Seawater-grown broccoli would be a good source of dietary nutrition to improve cognitive impairments in the future.

Antioxidant and antiproliferating effects of Setaria italica, Panicum miliaceum and Sorghum bicolor extracts on prostate cancer cell lines (조, 기장, 수수 추출물의 항산화 효과 및 전립선 암세포주 증식 억제 효능)

  • Kim, Jeong-Ho;Cho, Hyun-Dong;Hong, Seong-Min;Lee, Ju-Hye;Lee, Yong-Seok;Kim, Du-Hyun;Seo, Kwon-Il
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.1033-1041
    • /
    • 2016
  • In this study, we evaluated antioxidant and antiproliferating effects of Setaria italica extract (SIE), Panicum miliaceum extract (PME) and Sorghum bicolor extract (SBE). Antioxidant effects of these extracts were determined by assessing DPPH radical scavenging activity, $ABTS^+$ radical scavenging activity, reducing power and superoxide dismutase (SOD)-like activity. From high concentrations ($1,000{\mu}g/mL$) of each extract at DPPH radical scavenging activities of SIE, PME and SBE were 10.5%, 5.5% and 86.8% respectively, $ABTS^+$ radical activities were 4.92%, 5.9% and 62.3% respectively, reducing powers (OD 700) were 0.15, 0.18 and 1.7 respectively, and SOD-like activities were 17.0%, 15.9% and 38.6% respectively. In addition, SBE significantly decreased the cell viability of androgen-sensitive lymph node metastasis type of prostate cancer (LNCaP) cells in a dose-dependent manner. Morphological study of SBE-treated LNCaP cells revealed distorted and shrunken cell masses. SBE-induced cell death was confirmed by observation of nuclear condensation and increased formation of apoptotic bodies. The antiproliferative effect of SBE seems to be associated with the antioxidant activity of its polyphenol content. The results of this study indicate that SBE can exert antioxidant and antiproliferative effects and may be as a useful food material.

Toxic Effect of Cryoprotectants on Embryo Development in a Murine Model (생쥐모델을 이용한 동결보존제의 독성조사)

  • Yang, Kwan-Cheal;Kang, Hee-Gyoo;Lee, Hoi-Chang;Lee, Hyang-Heun;Ko, Duck-Sung;Yang, Hyun-Won;Park, Won-Il;Park, Eun-Joo;Kim, S. Samuel
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.59-65
    • /
    • 2004
  • Objectives: The aim of this study was to assess toxicities of cryoprotectants. Methods: Toxicities of two cryoprotectants, dimethyl sulfoxide (DMSO) and 1, 2-propanediol (PROH), were investigated using a murine embryo model. Female F-1 mice were stimulated with gonadotropin, induced ovulation with hCG and mated. Two cell embryos were collected and cultured after exposure to either DMSO or PROH. Embryo development was evaluated up to the blastocyst stage. Blastocysts were stained with bis-benzimide to evaluate the cell count and with terminal deoxynucleotidyl transferase mediated dUTP nick labeling (TUNEL) to assess apoptosis. Results: The total cell count of blastocysts that were treated with DMSO at the 2-cell stage was significantly lower than that were treated with PROH ($75.9{\pm}27.0$) or the control ($99.0{\pm}18.3$) (p<0.001). On comparison of two cryoprotectant treated groups, the DMSO treated group showed a decreased cell count compared with the PROH treated group (p<0.05). Both DMSO ($14.2{\pm}1.5$) and PROH ($11.2{\pm}1.4$) treated groups showed higher apoptosis rates of cells in the blastocyst compared with the control ($6.2{\pm}0.9$, p<0.0001). In addition, the DMSO treated group showed more apoptotic cells than the PROH treated group (p<0.001). Conclusions: The potential toxicity of cryoprotectants was uncovered by prolonged exposure of murine embryos to either DMSO or PROH at room temperature. When comparing two cryoprotective agents, PROH appeared to be less toxic than DMSO at least in a murine embryo model.

Protective Effect of Green Tea Extract, Catechin on UVB-Induced Skin Damage (녹차추출물 성분 catechin이 자외선에 의해 손상된 피부에 미치는 영향)

  • 이은희;이종권;홍진태;정경미;김용규;이선희;정수연;이용욱
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.2
    • /
    • pp.117-124
    • /
    • 2001
  • The main constituent of green tea, catechins have been reported to have numberous biological anti-vites including antimutagenic, antibacterial, hypocholesterolemic, antioxidant and antitumor properties. In the present study, we examined the protective effect of catechin on UVB-induced skin damage. Catechin (3 mg/mouse) was topically treated to dorsal area of SHK-1 hairless mouse daily for 2 weeks. UVB (100 mJ/$\textrm{cm}^2$) was also treated soon after application of catechin alone or with catechin for 2 weeks. Catechin reduced UVB-induced infiltration of inflammatory cells, fibrosis of cells and collagen-fiber formation. In addition, catechin also prevented UVB-induced DNA fragmentation and apoptosis cell number, but not changed p53 level. Furthermore catechin inhibited UVB-induced cell proliferation. There results showed that catechin have preventive effect aganinst UVB-induced skin damages. and these effects could contribute to the antitumor promoters activity.

  • PDF

Effect of Humulus japonicus Extract on Sperm Motility, Fertilization Status and Subsequent Preimplantation Embryo Development in Cattle (소에서 정자활성, 수정 양상 및 착상전 지속적 수정란 발달에 있어서 환삼덩굴 추출액의 효과)

  • Min, Sung-Hun;Kim, Jin-Woo;Do, Geon-Yeop;Lee, Yong-Hee;Ahn, Jae-Hyun;Chae, Sung-Kyu;Kim, Byung Oh;Park, Humdai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.38 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • Humulus japonicus is an ornamental plant in the Cannabaceae family. Although the mode of action of Humulus japonicus is not fully understood, a strong relationship was observed between anti-inflammatory and anticancer in some types of cells. Recent studies also have shown that Humulus japonicus possesses anti-inflammatory activities and may significantly improve antioxidant potential in Raw 264.7 macrophage cells. Thus, the aim of this study was evaluated the effect of Humulus japonicus extract on sperm motility and subsequent preimplantation developmental competence of the bovine embryos. After in vitro maturation, the oocytes with sperms were exposed in in vitro fertilization (IVF) medium supplemented with Humulus japonicus extract (0.01, 0.05, $0.1{\mu}g/mL$, respectively) for 1 day. In our results, exposure of IVF medium to Humulus japonicus extract did not affect sperm motility and percentage of penetrated oocytes but ROS intensity was significantly decreased by $0.01{\mu}g/mL$ compared with other groups (p< 0.05). Moreover, treatment with $0.01{\mu}g/mL$ of Humulus japonicus extract was higher the frequency of blastocyst formation than the any other groups (p<0.05). Otherwise, treatment with $0.01{\mu}g/mL$ of Humulus japonicus extract not increased the total cell number but reduced apoptotic-positive nuclei number. In conclusion, our results indicate that supplementation of Humulus japonicus extract in IVF medium may have important implications for improving early embryonic development in bovine embryos.

Purification of Recombinant CTP-Conjugated Human prostatic acid phosphatase for activation of Dendritic Cell (수지상세포 활성화를 위한 세포투과 펩타이드가 결합된 재조합 전립성 산성 인산분해효소의 정제)

  • Yi, Ki-Wan;Ryu, Kang
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.80-88
    • /
    • 2009
  • Human prostatic acid phosphatase (PAP), with comprehensive homology to glandular kallikrein, are representative serum biomarkers of prostate cancer. Dendritic cell (DC), which is the potent antigen-presenting cells(APC) in the immune system, can induce strong T cell responses against viruses, microbial pathogens, and tumors. Therefore, the immunization using DC loaded with tumor-associated antigens is a powerful method for inducing anti-tumor immunity. The CTP (Cytoplasmic Transduction Peptide) technology developed by Creagene which can transport attached bio-polymers like nucleic acids or proteins into the cell with high permeation efficiency. As the active forms of PAP can mediate apoptotic processing, we used multimer forms of PAP as an inactive form for antigen pulsing of DCs. In this study, multimeric forms of CTP-rhPAP was obtained according to the advanced purification process and subsequently confirmed by gel filtration chromatography, western blot and Dynamic Light Scattering. Therefore, CTP-conjugated PA multimers transduced into the cytoplasm were efficiently presented on the cell surface without any harm effect on cells via MHC class I molecules and result in induction of a large number of effector cell.

Caffeic Acid Phenethyl Ester Induces the Expression of NAG-1 via Activating Transcription Factor 3 (ATF3를 통한 caffeic acid phenethyl ester에 의한 NAG-1 유전자의 발현 증가)

  • Park, Min-Hee;Chung, Chungwook;Lee, Seong Ho;Baek, Seung Joon;Kim, Jong Sik
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a transforming growth factor beta (TGF-${\beta}$) superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. In the present study, we investigated if caffeic acid phenethyl ester (CAPE) derived from propolis could induce the expression of anti-tumorigenic gene NAG-1. Our results indicate that CAPE significantly induced NAG-1 expression in a time- and concentration-dependent manner in HCT116 cells. We also found that CAPE induced NAG-1 expression in a concentration-dependent manner in another human colorectal cancer cell line, LOVO. In addition, CAPE triggered apoptosis, which was detected with Western blot analysis using poly-(ADP-ribose) polymerase antibody. NAG-1 induction by CAPE was not dependent on transcription factor p53, which was confirmed with Western blot analysis using p53 null HCT116 cells. The luciferase assay results indicated that the new cis-elements candidates were located between -474 and -1,086 of the NAG-1 gene promoter. CAPE dramatically induced activating transcription factor 3 (ATF3) expression, but not cAMP response element-binding protein (CREB), which shares the same binding sites with ATF3. The co-transfection experiment with pCG-ATF3 and pCREB showed that only ATF3 was associated with NAG-1 up-regulation by CAPE, whereas CREB had no effect. In conclusion, the results suggest that CAPE could induce the expression of anti-tumorigenic gene NAG-1 mainly through ATF3.