• Title/Summary/Keyword: apoptotic cell death

Search Result 1,134, Processing Time 0.028 seconds

Promoting Effects of Sanguinarine on Apoptotic Gene Expression in Human Neuroblastoma Cells

  • Cecen, Emre;Altun, Zekiye;Ercetin, Pinar;Aktas, Safiye;Olgun, Nur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9445-9451
    • /
    • 2014
  • Neuroblastoma is the most common extracranial solid tumor in children. Approximately half of the affected patients are diagnosed with high-risk poor prognosis disease, and novel therapies are needed. Sanguinarine is a benzophenanthridine alkaloid which has anti-microbial, anti-oxidant and anti-inflammatory properties. The aim of this study is whether sanguinarine has in vitro apoptotic effects and which apoptotic genes might be affected in the human neuroblastoma cell lines SH-SY5Y (N-myc negative), Kelly (N-myc positive, ALK positive), and SK-N-BE(2). Cell viability was analysed with WST-1 and apoptotic cell death rates were determined using TUNEL. After RNA isolation and cDNA conversion, expression of 84 custom array genes of apoptosis was determined. Sanguinarine caused cell death in a dose dependent manner in all neuroblastoma cell lines except SK-N-BE(2) with rates of 18% in SH-SY5Y and 21% in Kelly human neuroblastoma cells. Cisplatin caused similar apoptotic cell death rates of 16% in SH-SY5Y and 23% in Kelly cells and sanguinarine-cisplatin combinations caused the same rates (18% and 20%). Sanguinarine treatment did not affect apoptototic gene expression but decreased levels of anti-apoptotic genes NOL3 and BCL2L2 in SH-SY5Y cells. Caspase and TNF related gene expression was affected by the sanguinarine-cisplatin combination in SH-SY5Y cells. The expression of regulation of apoptotic genes were increased with sanguinarine treatment in Kelly cells. From these results, we conclude that sanguinarine is a candidate agent against neuroblastoma.

Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells

  • Lee, Kyung-Hong;Lee, Min-Ho;Kang, Yeo-Wool;Rhee, Ki-Jong;Kim, Tae-Ue;Kim, Yoon-Suk
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.526-531
    • /
    • 2012
  • Many malignant tumors become resistant to tumor necrosis factor-alpha (TNF-${\alpha}$)-induced cell death during carcinogenesis. In the present study, we examined whether parkin acts as a tumor suppressor in HeLa cells, a human cervical cancer cell line resistant to TNF-${\alpha}$-induced cell death. TNF-${\alpha}$-treatment alone did not affect HeLa cell viability. However, expression of parkin restored TNF-${\alpha}$-induced apoptosis in HeLa cells. Increased cell death was due to the activation of the apoptotic pathway. Expression of parkin in TNF-${\alpha}$-treated HeLa cells stimulated cleavage of the pro-apoptotic proteins caspase-8, -9, -3, -7 and poly ADP ribose polymerase (PARP). In addition, parkin expression resulted in decreased expression of the caspase inhibitory protein, survivin. These results suggest that parkin acts as a tumor suppressor in human cervical cancer cells by modulating survivin expression and caspase activity. We propose that this pathway is a novel molecular mechanism by which parkin functions as a tumor suppressor.

A Study on Antitumor Effect and Mechanism of Cortex ulmi pumilae Water Extract on HepG2 Hepatoma cell (유근피(楡根皮) 추출액(抽出液)이 HeoG2 간암세포(肝癌細胞)에 미치는 항암효과(抗癌效果) 및 기전(機轉)에 대(對)한 연구(硏究))

  • Choi, Su-Deock;Park, Young-Kweon;Kim, Gang-San;Kang, Byung-Ki;Han, Sang-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.259-266
    • /
    • 2000
  • Objectives : The effects of aqueous extracts of Cortex ulmi pumilae (a traditional medicine for cancer treatment in oriental medicine) on the induction of apoptotic cell death were investigated in human liver origm hepatoma cell lines, HepG2. Methods : The death of HepG2 cells was markedly induced by the addition of extracts of Cortex ulmi pumilae in a dose-dependent manner. The apoptotic characteristic ladder pattern of DNA strand break was not observed in cell death of HepG2. In addition, it was not shown nucleus chromatin condensation and fragmentation under hoechst staining. However, by the using annexin V staining assay, externalizations of phosphatidylserine in HepG2 cell which were treated with Cortex ulmi pumilae extracts were detected in the early time (at 9 hr after extract treatment). Furthermore, LDH release was not detected in this early stage. Therefore, Cortex ulmi pumilae extracts-induced cell death of HepG2 cells is mediated by apoptotic death signal processes. Result : The activity of caspase 3-like proteases remained in a basal level in HepG2 cells which treated with the extract of Cordyceps sinensis. However, it was markedly increased in HepG2 cells which treated with two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K) which were differently extracted (respectively, 2.3 and 3.3 fold). On a while, the phosphotransferase activities of JNK1 was markedly induced in HepG2 cells which were treated with two extracts of Cortex ulmi pumilae. On the contrary, the activation of transcriptional activator, activating protein1(AP-1) and NF-kB were severely decreased by these two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K). In addition, antioxidants (GSH and NAC) and intracellular $Ca2^+$ level regulator (Bapta/AM and Thapsigargin) did not affect Cortex ulmi pumilae extracts-induced apoptotic death of HepG2 cells. Conclusions : In conclusion, our results suggest that two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K) induces the apoptotic death of human liver origin hepatoma HepG2 cells via activation of caspase 3-like proteases as well as JNK1, and inhibition of transcriptional activators, AP-1 and $NK-{\kappa}B$.

  • PDF

Anti-cancer Effects of Bujeonghangam-tang on Human Neuroblastoma Cell Line LAN5 (인간 신경모세포종 세포주 LAN5에 대한 부정항암탕(扶正抗癌湯)의 항종양효과)

  • Cho, Young-Kee;Lee, Seong-Kyun;Lee, Jung-Sup;Nam, Sang-Kyu;Jeong, Hyun-Ae;Moon, Goo;Moon, Mi-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1548-1555
    • /
    • 2006
  • Bujeonghangam-tang(BHT) has been used as an anticancer agent in oriental medicine, but the mechanism by which it induces cell death in cancer cells is still unclear. To investigate cell death mechanism by BHT in cancer cells, the activities of apoptosis signaling pathway were tested in human neuroblastoma cell line LAN5. Viability of LAN5 cells was markedly decreased by treatment of the water extract of BHT in a dose-dependent manner. BHT induced cell death was confirmed as apoptosis characterized by chromatin condensation. We tested whether the water extract of BHT affects the anti-apoptotic protein such as Bcl-2 and Bcl-XL, and the pro-apoptotic protein such as Bax. Both Bcl-2 and Bcl-XL were gradually decreased but Bas was increased in a time-dependent manner after the addition of the water extract of BHT. Cleavage of Bid by activation of caspase-8 protease was also observed in LAN-5 cells by the treatment of the water extract of BHT. Taken together, these results suggest that the water extract of BHT exerts anti-cancer effects on human neuroblastoma LAN-5 cells by inducing the apoptotic death via down-regulation of anti-apoptotic proteins such as Bcl-2 and Bcl-XL, up-regulation of pro-apoptotic protein such as Bax, and activation of intrinsic caspase cascades.

Caspase-2 mediates triglyceride (TG)-induced macrophage cell death

  • Lim, Jaewon;Kim, Hyun-Kyung;Kim, Sung Hoon;Rhee, Ki-Jong;Kim, Yoon Suk
    • BMB Reports
    • /
    • v.50 no.10
    • /
    • pp.510-515
    • /
    • 2017
  • Triglyceride (TG) accumulation causes macrophage cell death, which affects the development of atherosclerosis. Here, we examined whether caspase-2 is implicated in TG-induced macrophage cell death. We found that caspase-2 activity is increased in TG-treated THP-1 macrophages, and that inhibition of caspase-2 activity drastically inhibits TG-induced cell death. We previously reported that TG-induced macrophage cell death is triggered by caspase-1, and thus investigated the relationship between caspase-2 and caspase-1 in TG-induced macrophage cell death. Inhibition of caspase-2 activity decreased caspase-1 activity in TG-treated macrophages. However, caspase-1 inhibition did not affect caspase-2 activity, suggesting that caspase-2 is upstream of caspase-1. Furthermore, we found that TG induces activation of caspase-3, -7, -8, and -9, as well as cleavage of PARP. Inhibition of caspase-2 and -1 decreased TG-induced caspase-3, -7, -8, and -9 activation and PARP cleavage. Taken together, these results suggest that TG-induced macrophage cell death is mediated via the caspase-2/caspase-1/apoptotic caspases/PARP pathways.

Effects of LED irradiation on the expression of apoptosis-related molecules in human SH-SY5Y neuroblastoma cells

  • Cho, Kyu-Seung;Ryu, Sun-Youl;Choi, Hong-Ran
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • To verify the inhibitory or protective effects of light-emitting diode(LED) irradiation on apoptotic cell death induced by $CoCl_2$, human SH-SY5Y cells were treated with $CoCl_2$ and LED were used to irradiate the cells. In the cell viability assay, cells were died slowly from $50{\mu}M$ to $250{\mu}M$ and about 50% of cells died after 12 hours at $400{\mu}M$ of $CoCl_2$. The Diff-Quik staining revealed that cells showed condensation of DNA and blebbing of the cell membrane. The DNA fragmentation assay revealed the DNA fragmentation, which is another apoptosis marker, occurred in cells treated with $400{\mu}M$ $CoCl_2$ for 16 hours. In the western blot for HIF-$1{\alpha}$, HIF-$1{\alpha}$ was expressed after 3 hours from induction and peaked maximally at 16 hours. In the cell viability assay of the effects of LED irradiation (at 590 nm for 1 hour 20 minutes), the cells showed more proliferation (about 20%) than the control group. The RPA assay of various apoptosis-related molecules showed that pro-apoptosis molecules such as Bax, Bak, and Bid were upregulated in the $CoCl_2$ treatment group. This means that the apoptotic cell population was increased. However there was some significant changes in LED irradiated cells. In the $CoCl_2$-treated LED irradiation group, those molecules were down-regulated more than in the only $CoCl_2$-treated group. These results have shown that $CoCl_2$ may induce apoptotic cell death in human SH-SY5Y neuroblastoma cells. And LED irradiation has a positive effect on apoptotic cells by down-regulation of pro-apoptotic molecules.

Effect of Ailanthus altissima Water Extract on Cell Cycle Control Genes in Jurkat T Lymphocytes (Jurkat T 임파구의 세포주기 기전에 미치는 저근백피(Ailanthus altissima)의 효과)

  • 전병훈;황상구;이형철;김춘관;김대근;이기옥;윤용갑
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • Ailanthus altissima has been used to settle an upset stomach, to alleviate a fever and as an insecticide. We reported that the water extract of A. altissima induced apoptotic cell death in Jurkat T-acute Iymphoblastic leukemia cells. Here, we showed the dose-dependent inhibitions of cell viability by the extract, as measured by cell morphology. The cell cycle control genes are considered to play important roles in tumorigenesis. The purpose of the present study is also to investigate the effect of A. altissima on cell cycle progression and its molecular mechanism in the cells. The level of p21 protein was increased after treatment of the extract, whereas both Bcl-2 and Bax protein levels were not changed. These results suggest that A. altissima induces apoptotic cell death via p21-dependent signaling pathway in Jurkat cells which delete wild type p53. Gl checkpoint related gene products tested (cyclin D3, cyclin dependent kinase 4, retinoblastoma, E2Fl) were decreased in their protein levels in a dose-dependent manner after treatment of the extract Taken together, these results indicate that the increase of apoptotic cell death by A. altissima may be due to the inhibition of cell cycle in Jurkat cells.

EphA Receptors Form a Complex with Caspase-8 to Induce Apoptotic Cell Death

  • Lee, Haeryung;Park, Sunjung;Kang, Young-Sook;Park, Soochul
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • EphA7 has been implicated in the regulation of apoptotic cell death in neural epithelial cells. In this report, we provide evidence that EphA7 interacts with caspase-8 to induce apoptotic cell signaling. First, a pull-down assay using biotinylated ephrinA5-Fc showed that EphA7 co-precipitated with wild type caspase-8 or catalytically inactive caspase-8 mutant. Second, co-transfection of EphA7 with caspase-8 significantly increased the number of cleaved caspase-3 positive apoptotic cells under an experimental condition where transfection of EphA7 or caspase-8 alone did not affect cell viability or apoptosis. EphA4 also had a causative role in inducing apoptotic cell death with caspase-8, whereas EphA8 did not. Third, caspase-8 catalytic activity was essential for the apoptotic signaling cascade, whereas tyrosine kinase activity of the EphA4 receptor was not. Interestingly, we found that kinase-inactive EphA4 was well co-localized at the plasma membrane with catalytically inactive caspase-8, suggesting that an interaction between these mutant proteins was more stable. Finally, we observed that the extracellular region of the EphA7 receptor was critical for interacting with caspase-8, whereas the cytoplasmic region of EphA7 was not. Therefore, we propose that Eph receptors physically associate with a transmembrane protein to form an apoptotic signaling complex and that this unidentified receptor-like protein acts as a biochemical linker between the Eph receptor and caspase-8.

The role of mitochondria in apoptosis

  • Jeong, Seon-Yong;Seol, Dai-Wu
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.11-22
    • /
    • 2008
  • Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. $Ca^{2+}$ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize $Ca^{2+}$ signaling. Massive accumulation of $Ca^{2+}$ in the mitochondria leads to apoptosis. The $Ca^{2+}$ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.

Protection of Codonopis pilosula Extract against Cell Death of SK-N-MC Neuroblastoma Cells Treated with $H_2O_2$ (만삼(蔓蔘)의 과산화수소에 의한 SK-N-MC의 세포사에 미치는 영향)

  • Lee, Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.328-332
    • /
    • 2008
  • The purpose of this study was to identify the protective effect of Codonopis pilosula extract on cell death induced by $H_2O_2$ in SK-N-MC neuroblastoma cells. We measured the antioxidant effect by DPPH radical scavenging analysis, BSA analyssis and examined the cell viability by crystal violet and cytochrome C, Bax, Bcl-2, p53, p21 by using Western blot analysis. Codonopis pilosula extract scavenged DPPH radical in a dose-dependent manner and shown direct free radical scavenging effect, suggested that Codonopis pilosula extract have antioxidant effect in vitro. Treatment of cells with hydrogen peroxide, a reactive oxygen species, was to induce cell death and pretreatment with Codonopis pilosula extract attenuated the occurrence of $H_2O_2-induced$ cell death. To elucidate the protective mechanisms of action of Codonopis pilosula extract, Western blot analyses for Bcl-2 and Bax expression and cytochrome c release were carried out. Pretreatment with Codonopis pilosula extract induced the expression of Bcl-2 and suppressed the release of cytochrome c and Bax into the cytosol, thereby arresting $H_2O_2-induced$ apoptotic cell death. Especially p21 and p53 were decreased prior to $H_2O_2$ treatment. These results suggest that Codonopis pilosula extract is associated with the cell cycle and anti-apoptotic cell death.