• 제목/요약/키워드: antistatic materials

검색결과 21건 처리시간 0.198초

대전방지처리된 물질의 정전기 대전특성에 관한 연구 (A Study on the Electrostatic Characteristics of the Materials Treated by Antistatic Additives)

  • 장영민;정재희;이관형;차영식;정춘기;이덕출
    • 한국안전학회지
    • /
    • 제10권1호
    • /
    • pp.20-27
    • /
    • 1995
  • There are many methods to move or reduce the static electricity which often causes disasters in Industry, etc. The methods may Include grounding of a potentially-charged body, use of antistatic materials, humidification of an atmosphere, use of static electricity eliminators. Among those methods, the one utilizing antistatic materials is widely used in the industrial fields due to its effectiveness and inexpectiveness. In Korea, safety regulations and technical standards are not sufficient for applying to industrial fields as electrostatic disaster prevention measures due to the shortage of practically verified and reliable data. The propose of this paper is to examine the electrostatic characteristics of the antistatic materials and non-antistatic ordinary materials under the various conditions of different temperature and humidity.

  • PDF

리튬 불소계 화합물과 4차 암모늄염을 사용한 대전방지제의 표면저항 및 대전방지필름의 특성 평가 (Surface Resistance of Antistatic Agent Using Lithium-Fluoro Compound and Quaternary Ammonium Salt and Characteristics Evaluation of Antistatic Film)

  • 소순영;전용진;이재경
    • 한국산학기술학회논문지
    • /
    • 제21권4호
    • /
    • pp.575-581
    • /
    • 2020
  • 낮은 표면저항값과 높은 투과도가 요구되는 LCD용 대전방지필름에 사용할 수 있는 무색상을 지닌 대전방지제를 개발하였다. 리튬 불소계 화합물과 4차 암모늄염 중에서 전기전도도를 바탕으로 대전방지 물질을 선정하고 대전방지제를 제조하여 표면저항값을 측정하였다. 그 결과 대체적으로 전도도가 높은 물질이 비교적 낮은 표면저항값 즉 상대적으로 양호한 대전방지 성능을 보여주고 있음을 알 수 있었다. 선정된 대전방지 물질을 중심으로 최적의 대전방지제를 제조하는 배합비를 실험계획법을 통하여 수립하고 각 인자들이 미치는 영향을 분석하였다. 대전방지 물질로 사용한 리튬 불소계 화합물의 사용량이 많을수록, 상대적으로 다관능기를 갖는 올리고머의 사용비율이 높을수록 표면저항값이 작게 나타났다. 4차 암모늄염은 리튬 불소계 화합물의 대전방지 성능을 증가시켰으나 사용량에 따른 영향은 상대적으로 크지 않았다. 대전방지용 PET 필름을 제조한 후 특성을 평가한 결과 낮은 표면저항값(<109 Ω/sq.) 및 높은 투과도(>92%), 낮은 헤이즈(<0.5%) 및 높은 백색도(L>95)를 나타내었다. 또한 고온 고습의 조건하에서도 10% 이내의 안정적인 표면저항 변화율을 보임으로서 대전방지필름의 신뢰도가 아주 우수함을 확인하였다.

정전기 방지를 위한 기능성 펄프 트레이 개발 (Development of Functional Pulp Tray for Prevention of Static Electricity)

  • 이지영;김철환;남혜경;박형훈;권솔;이영민
    • 펄프종이기술
    • /
    • 제47권5호
    • /
    • pp.52-60
    • /
    • 2015
  • Static electricity is an imbalance of electric charges within or on the surface of a material. All packed items that are particularly sensitive to static discharge must be protected by antistatic treatment. Otherwise, static electricity generated by an electrical insulator may cause serious damages to some sensitive electronics. In order to remove or prevent a buildup of static electricity, packed items must be treated with the application of an antistatic agent, which helps any excess charge to be evenly distributed. Functional pulp tray used for packing of electronic goods was developed with application of an antistatic agent. As the concentration of the antistatic agent increased, charging voltage and surface resistance of molded pulps decreased. The increase of humidity in surrounding atmosphere around molded pulps led to the decrease of accumulation of static charges. In conclusion, the surface treatment of the antistatic agent not only reduced or eliminated buildup of static electricity in the surface, but also prevented generation of tiny dirts from molded tray.

대전방지 열가소성폴리우레탄 M/B를 이용한 코팅사 제조 조건이 대전방지성에 미치는 영향 (The Effect of Manufacturing Conditions of Coated Yarn Using Anti-Static Thermoplastic Polyurethane M/B on Anti-Static Resistance)

  • 정예담;권지은;권선민;채시현;조현제;김우석;김미경;김종원
    • 한국염색가공학회지
    • /
    • 제35권1호
    • /
    • pp.20-28
    • /
    • 2023
  • In this study, TPU resin for coating was prepared by varying the mixing ratio of antistatic TPU and recycled TPU to manufacture permanent antistatic materials. The coated yarn was prepared by coating on the nylon yarn, and then the thermal, rheological, mechanical properties and antistatic properties were analyzed. In addition, antistatic properties and durability were confirmed after manufacturing UD fabrics using coated yarns. The mixing ratio of antistatic TPU and recycled TPU was most appropriate at 4:6, and the antistatic property had a surface resistance of 2.20 × 109 Ω and a static charge of 398 V. In the coating process, the coating speed was most appropriate at 0.21 m/s, and the surface resistance of the UD fabric manufactured with the coated yarn manufactured under this condition was 6.80 × 109 Ω and the static charge was 484 V. The UD fabric had a surface resistance of 7.21 × 109 Ω and a static charge of 517 V after washing 10 times, and it was confirmed that the permanent antistatic property was excellent.

Synthesis and Dispersion Stabilization of Indium Tin Oxide Nanopowders by Coprecipitation and Sol-Gel Method for Transparent and Conductive Films

  • Cho, Young-Sang;Hong, Jeong-Jin;Kim, Young Kuk;Chung, Kook Chae;Choi, Chul Jin
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.831-841
    • /
    • 2010
  • Indium tin oxide (ITO) nanopowders were synthesized by coprecipitation and the sol-gel method to prepare a stable dispersion of ITO nano-colloid for antistatic coating of a display panel. The colloidal dispersions were prepared by attrition process with a vibratory milling apparatus using a suitable dispersant in organic solvent. The ITO coating solution was spin-coated on a glass panel followed by the deposition of partially hydrolyzed alkyl silicate as an over-coat layer. The double-layered coating films were characterized by measuring the sheet resistance and reflectance spectrum for antistatic and antireflective properties.

Pulsed DC 마그네트론 스퍼터링으로 제조한 소다라임 유리의 고투과 및 대전방지 박막특성 연구 (A study on the high transparent and antistatic thin films on sodalime glass by reactive pulsed DC magnetron sputtering)

  • 정종국;임실묵
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.353-362
    • /
    • 2022
  • Recently, transmittance of photomasks for ultra-violet (UV) region is getting more important, as the light source wavelength of an exposure process is shortened due to the demand for technologies about high integration and miniaturization of devices. Meanwhile, such problems can occur as damages or the reduction of yield of photomask as electrostatic damage (ESD) occurs in the weak parts due to the accumulation of static electricity and the electric charge on chromium metal layers which are light shielding layers, caused by the repeated contacts and the peeling off between the photomask and the substrate during the exposure process. Accordingly, there have been studies to improve transmittance and antistatic performance through various functional coatings on the photomask surface. In the present study, we manufactured antireflection films of Nb2O5, | SiO2 structure and antistatic films of ITO designed on 100 × 100 × 3 mmt sodalime glass by DC magnetron sputtering system so that photomask can maintain high transmittance at I-line (365 nm). ITO thin film deposited using In/Sn (10 wt.%) on sodalime glass was optimized to be 10 nm-thick, 3.0 × 103 𝛺/☐ sheet resistance, and about 80% transmittance, which was relatively low transmittance because of the absorption properties of ITO thin film. High average transmittance of 91.45% was obtained from a double side antireflection and antistatic thin films structure of Nb2O5 64 nm | SiO2 41 nm | sodalime glass | ITO 10 nm | Nb2O5 64 nm | SiO2 41 nm.

Studies on the Surface Properties of PMMA after Accelerated Weathering

  • Kwon, Young Bum;Ha, Jin Uk;Hwang, Ye Jin;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.350-354
    • /
    • 2016
  • The surface properties of poly(methyl methacrylate) (PMMA) were investigated after accelerated weathering. Glossinesses, contact angles, surface free energies, thermal stability, and mechanical properties were investigated. The glossiness of the weathered PMMA was decreased with increasing exposure time. Contact angles and surface free energies were not overtly changed because the amount of oxygen on the surface was remained. PMMA was compounded with anti-block and antistatic agents using a co-rotating twin screw extruder to improve the durability. The PMMA composites showed better glossinesses after accelerated weathering while maintaining the contact angles, surface energy, thermal stability, and mechanical properties without significant changes.

옷감 종류별 인체대전 정전기 방전에 의한 인화성물질 점화능력 (Ignition Ability of Flammable Materials by Human Body's Electrostatic Discharge by Type of Fabric)

  • 현종수
    • 한국안전학회지
    • /
    • 제39권2호
    • /
    • pp.1-8
    • /
    • 2024
  • Unwanted effects of electrostatic phenomena occur in various industries. Electrostatic problems originating from the human body in flammable atmospheres in the industry are especially concerning. A substantial volume of experimental data on the electrostatic charging voltages created on the human body owing to the rubbing of apparel were generated and reviewed during this study. The data were reviewed to determine whether the resultant charging levels of the human body are hazardous in flammable atmospheres. This study was conducted under several conditions, such as different fiber types used in apparel, shoe types, and relative humidities (RHs). The following conclusions were drawn in this study. ① The electrostatic charging levels of the human body owing to the rubbing of apparel increase with the increase in the surface resistances of apparel; however, the electrostatic charging levels may be different depending on the condition of the cloth surface. ② The discharging energy of 1.98-18.5 [mJ] from the human body exceeds the minimum ignition energy of most flammable materials, when removing an overcoat made of polyester, cotton and wool under severe conditions such as wearing height-raising shoes for men. ③ When removing antistatic apparel, the maximum discharging energy of 0.128 mJ from the human body is dangerous if the minimum ignition energy of the flammable material is between 10-5-10-4 [J] Grade; however, a minimum ignition energy of 10-3 J Grade of the flammable material is considered safe. ④ While wearing antistatic shoes, the electrostatic charging voltage generated in the human body when removing an overcoat is 30 V; therefore, wearing such shoes is a suitable countermeasure when handling flammable materials. However, the antistatic abilities of shoes reduce when thick socks are worn. ⑤ As RH increases, the electrostatic charging levels of the human body decrease. ⑥ The electrostatic charging levels of the human body from removing a cotton overcoat can ignite the majority of flammable materials when RH is less than 30% under severe conditions such as wearing height-raising shoes for men.

PCB Powder를 이용한 다기능 복합체의 제조 및 특성 (Preparation and Characterization of the Multi-functional Complex Utilizing PCB Powder)

  • 박병기
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.34-39
    • /
    • 2015
  • The feasibility of recycling wasted printed circuit board (PCB) is investigated by preparing PCB added flame retardant composites filled with either unsaturated polyester or polyurethane. In order to improve electroconductive properties, copper powder was added into the composites, which results also in improving their antistatic properties. The prepared composite samples showed a binding between the polymer fillers observed by a scanning microscope. The sample group using unsaturated polyester is elastomeric that led to appreciable elongation and elasticity. In case of polyurethane, the tensile strength increased proportionally as increase of the amount of PCB powder. The composite materials can be utilized as antistatic composite materials, since the surface resistivity result showed increase of the electroconductive properties by adding Cu. The flammability of the samples is not satisfactory according to UL-94 vertical test. However, the flame retardant properties were improved by adding PCB power. This study, therefore, showed that it is feasible to fabricate polymer composite materials and improve the material characteristics by adding PCB powder, which can replace existing additives used for the preparation of polymer composite materials and can reduce the environment contamination by recycling the wasted PCB.

탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구 (Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials)

  • 김정근;최선호;고선호;곽이구;강성수
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.59-67
    • /
    • 2020
  • Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.