• Title/Summary/Keyword: antiproliferation activity

Search Result 54, Processing Time 0.029 seconds

Induction of apoptosis by etoposide treatment in colon cancer cell line SNU C2A (대장암 세포주 SNU C2A에서 etoposide 처리에 의한 apoptosis 유도)

  • Jung, Ji-Yeon;Na, Yun-sook;Jung, Ho-Chul;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • Background: Inactivation of tumor suppressor genes is believed to be important in the development of many human malignancies. Recently, several lines of evidence have indicated that the wild type p53 gene located at 17p13.3, may function as a tumor suppressor gene and that a mutant p53 gene could promote transformation by inactivating normal p53 function in a dominant negative fashion. These broad spectrum of p53 mutation in human cancers provide that mutant p53 and their protein may be potential targets of tumor diagnostic and therapeutic interventions. Method: Colony formation was performed to investigate growth suppressional ability. p53 expression pattern was examined by western blot and p53-mediated transactivation ability was assessed by CAT activity. SNU C2A cells were observed in apoptotic aspects induced by etoposide and $H_2O_2$ treatment, detecting sensitivity on agent, DNA fragmentation through agarose gel, chromatin condensation by fluorescence microscope, and cell cycle distribution by FACS. Result: 1) p53 mutant his179arg ($histidine{\rightarrow}arginine$) detected in SNU C2A cells lost transcriptional activity and growth suppression ability, showing dominant negative effect on its wild type p53. 2) Etoposide-treated SNU C2A cells induced apoptosis, exhibiting dramatic reduction of cell growth, DNA fragmentation, nuclear condensation formation of apoptotic body and increment of sub-G1 cell fraction. 3) Etoposide and $H_2O_2$-treated SNU C2A cells have no high increase of p53 expression and overexpressed p53 protein changed localization, from cytoplasm to nucleus. Also, p53-mediated transcriptional activity was increased by agents-treatment. Conclusion: SNU C2A cells coexpress wild-type and mutant p53 protein induced apoptosis in the condition on DNA damage, through localizational shift from cytoplasm to nucleus of p53 protein rather than the induction of p53 protein. SNU C2A cells derived mutant p53 his179arg abrogated both the growth supression ability and transactivational activity, showing inhibition effect on transcriptional activity of wild type p53, but did not repress the activity of wild type p53 in SNU C2A cells owing to dominant activity of wild type. These cell condition may provide new gene therapeutic implications leading effective antiproliferation of cell when mutant and wild-type p53 protein were co-expressed in cell.

  • PDF

Antimicrobial Properties and Cytotoxicity of Sulfated (1,3)-β-D-Glucan from the Mycelium of the Mushroom Ganoderma lucidum

  • Wan-Mohtar, Wan Abd Al Qadr Imad;Young, Louise;Abbott, Grainne M.;Clements, Carol;Harvey, Linda M.;McNeil, Brian
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.999-1010
    • /
    • 2016
  • Ganoderma lucidum BCCM 31549 has a long established role for its therapeutic activities. In this context, much interest has focused on the possible functions of the (1,3)-β-D-glucan (G) produced by these cultures in a stirred-tank bioreactor and extracted from their underutilized mycelium. In the existing study, we report on the systematic production of G, and its sulfated derivative (GS). The aim of this study was to investigate G and its GS from G. lucidum in terms of their antibacterial properties and cytotoxicity spectrum against human prostate cells (PN2TA) and human caucasian histiocytic lymphoma cells (U937). 1H NMR for both G and GS compounds showed β-glycosidic linkages and structural similarities when compared with two standards (laminarin and fucoidan). The existence of characteristic absorptions at 1,170 and 867 cm-1 in the FTIR (Fourier Transform Infrared Spectroscopy) for GS demonstrated the successful sulfation of G. Only GS exhibited antimicrobial activity against a varied range of test bacteria of relevance to foodstuffs and human health. Moreover, both G and GS did not show any cytotoxic effects on PN2TA cells, thus helping demonstrate the safety of these polymers. Moreover, GS showed 40% antiproliferation against cancerous U937 cells at the low concentration (60 μg/ ml) applied in this study compared with G (10%). Together, this demonstrates that sulfation clearly improved the solubility and therapeutic activities of G. The water-soluble GS demonstrates the potential multifunctional effects of these materials in foodstuffs.

Attenuation of the Corticosterone-induced Antiproliferative Effect on Human Neuroblastoma SH-SY5Y Cells Using Hot-water Extract from Liriope muscari (Corticosterone에 의해 유도된 인간의 신경모세포종 SH-SY5Y 세포 증식 억제를 완화시키는 맥문동 열수 추출물의 효과에 관한 연구)

  • Lee, Jong Kyu;Kim, Sang-Bo;Seo, Yong Bae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.517-523
    • /
    • 2018
  • Elevated levels of cortisol caused by chronic stress may lead to neuron damage in the hippocampus by activating the glucocorticoid receptors (GRs). In cortisol-deficient animals, corticosterone is known to function as a stress hormone. In humans however, corticosterone is considered a precursor of aldosterone and a glucocorticoid with similar properties to cortisol. Recently, many studies have been conducted on the role of cortisol and other synthetic glucocorticoids like dexamethasone in humans, but the exact function of corticosterone is unknown. This study examined the viability of human neuroblastoma SH-SY5Y cells treated with various concentrations of corticosterone for 24 and 48 hr via MTT assay. The MTT-assay results showed that corticosterone had an antiproliferation effect on SH-SY5Y cells at higher concentrations (500 and $1,000{\mu}M$), while in lower concentrations ($100{\mu}M$), it showed no antiproliferation effect. Cytotoxicity analysis of extracts from three medicinal crops (Liriope muscari, Schisandra chinensis, and Wolfiporia extensa) revealed that they all possessed deleterious effects on SH-SY5Y cells depending on dosage. However, it was observed that, at a concentration of $500{\mu}g/ml$, Liriope muscari attenuated the corticosterone-induced antiproliferation on SY-SH5Y cells and restored cell growth after 48 hours of treatment. The study examined the synergistic effect of six mixtures each containing $500{\mu}g/ml$ of Liriope and various concentrations of Schisandra (50 or $100{\mu}g/ml$) and Wolfiporia (10, 30, and $50{\mu}g/ml$). The results showed minor growth-restoration activity but less than that of Liriope muscari only, suggesting that Schisandra and Wolfiporia had no additive or synergistic effects.

Biological Activity of the Fractions Extracted from Rhodiola dumulosa (홍경천 추출물의 생리활성)

  • Park, Kyung-Uk;Yoon, Jae-Ho;Kim, Jae-Yong;Jeong, Chang-Ho;Park, Chae-Kyu;Song, Won-Seob;Seo, Kwon-Il
    • Food Science and Preservation
    • /
    • v.12 no.5
    • /
    • pp.496-500
    • /
    • 2005
  • To develop functional food material using Rhodiola dumulosa(RD), the biological activities such as antioxidation, antiproliferation in the cancer cells and immuno-activity in macrophage cells were investigated with hexane, ethylacetate, n-butanol, methanol and water fractions of RD 80% methanol extract. Hydrogen-donating activities of hexane, ethyl acetate, n-butanol, methanol and water fraction were 28.30, 53.21, 35.48, 42.64 and 21.14%, respectively, at a concentration of 100 ${\mu}g/mL$, and the activity of ethyl acetate fraction was similar to as that of BHT. After treated for 48 hrs, the ethyl acetate fraction decreased the proliferation of the A549 and SW480 cells in a dose-dependent manner at concentration of 10, 50, and 100 ${\mu}g/mL$, the activities were higher than other fractions. Morphology of cells treated with the ethyl acetate fraction for 48 hr at 100 ${\mu}g/mL$ was distorted with shrank cell mass, and the cell number was lower than that of control cells the macrophage cells treated. The methanol fraction was significantly induced NO production compared with untreated control cells at above 10 ${\mu}g/mL$ concentration. These results indicate that RD would be used the functional food material.

Effect of Soy Isoflavones on the Expression of $TGF-{\beta}1$ and Its Receptors in Cultured Human Breast Cancer Cell Lines

  • Kim Young-Hwa;Jin Kyong-Suk;Lee Yong-Woo
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.175-183
    • /
    • 2005
  • The two major isoflavones in soy, genistein and daidzein, are well known to prevent hormone-dependent cancers by their anti estrogenic activity. The exact molecular mechanisms for the protective action are, however, not provided yet. It has been reported that genistein and daidzein have a potential anticancer activity through their antiproliferative effect in many hormone-dependent cancer cell lines. Transforming growth $factor-\beta1(TGF-\beta1)$ has also been found to have cell growth inhibitory effect, especially in mammary epithelial cells. This knowledge led to a hypothetical mechanism that the soy isoflavones-induced growth inhibitory effect can be derived from the regulation of $TGF-\beta1$ and $TGF-\beta$ receptors. In order to test this hypothesis, the effects of the soy isoflavones at various concentrations and periods on the expression of $TGF-\beta1$and $TGF-\beta$ receptors were investigated by using Northern blot analysis in human breast carcinoma epithelial cell lines, an estrogen receptor positive cell line (MCF-7) and an estrogen receptor negative cell line (MDA-MB-231). As a result, only genistein has shown a profound dose-dependent effect on $TGF-\beta1$ expression in the $ER^+$ cell line within the range of doses tested, and the expression levels are correspondent to their inhibitory activities of cell growth. Moreover, daidzein showed down-regulated $TGF-\beta1$ expression at a low dose, the cell growth proliferation was promoted at the same condition. Therefore, antiproliferative activity of the soy isoflavones can be mediated by $TGF-\beta1$ expression, and the effects are mainly, if not all, occurred by ER dependent pathway. The expression of $TGF-\beta$ receptors was induced at a lower dose than the one for $TGF-{\beta}1$ induction regardless of the presence of ER, and the expression patterns are similar to those of the cell growth inhibition. These results indicated that the regulation of $TGF-\beta$ receptor expression as well, prior to $TGF-\beta1$ expression, may be involved in the antiproliferative activity of soy isoflavones. Little or no expression of $TGF-\beta$ receptors was found in the MCF-7 and MDA-MB-231 cells, suggesting refractory properties of the cells to growth inhibitory effect of the $TGF-\beta$. The soy isoflavones can seemingly restore the sensitivity of growth inhibitory responses to $TGF-\beta1$ by re-inducing $TGF-\beta$ receptors expression. In conclusions, our findings presented in this study show that the antitumorigenic activity of the soy isoflavones could be mediated by not only $TGF-\beta1$induction but $TGF-\beta$ receptor restoration. Thus, soy isoflavones could be good model molecules to develop new nonsteroidal antiestrogenic chemopreventive agents, associated with, regulation of $TGF-\beta$ and its receptors.

  • PDF

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee;Jin Ho Choi;Kyung-Min Lee;Min Woo Lee;Ja-Lok Ku;Dong-Chan Oh;Yern-Hyerk Shin;Dae Hyun Kim;In Rae Cho;Woo Hyun Paik;Ji Kon Ryu;Yong-Tae Kim;Sang Hyub Lee;Sang Kook Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.123-135
    • /
    • 2024
  • Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.

Antioxidant and Antiproliferating Effects of Prunus mume Vinegar Powder on Breast Cancer Cells (매실 식초 분말의 항산화 및 유방암 세포주 증식 억제 효과)

  • Park, Wool-Lim;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.149-157
    • /
    • 2021
  • Prunus mume Sieb. et Zucc is widely distributed in East Asia (Korea, Japan, and China), and its fruit is often used as a medication and food material. However, because most previous studies have only investigated the state of Prunus mume fruit extract, studies on the various ways of processing this extract are still needed to increase its utilization. In this study, we evaluated the physicochemical properties and physiological activities of spray-dried Prunus mume vinegar powder (SPP). The sugar content, pH, total acidity, and moisture content of the SPP were 8.90 °Brix, 3.19, 1.05%, and 3.07%, respectively. The SPP exhibited significantly high antioxidant activity in terms of DPPH radical scavenging activity (65.55%), reducing power (1.48), and hydrogen peroxide scavenging activity (48.07%). In addition, the SPP remarkably decreased the cell viability of human breast MDA-MB-231 and human skin cancer SK-MEL-28 in a dose-dependent manner. The morphological results of the treatment of MDA-MB-231 cells with SPP were distorted, shrunken cell masses. Furthermore, apoptotic bodies and nuclear condensation formed in the SPP-treated MDA-MB-231 cells. The total polyphenol and flavonoid contents of the SPP were 59.58 ㎍/g (gallic acid equivalent) and 57.56 ㎍/g (quercetin equivalent). The results of this study indicate that SPP, which has antioxidant activity and anticancer effects, can be useful in the development of natural medicines and functional food ingredients.

Antiproliferative Activity of Vegetable Soup in Human Cancer cells for Wellness Convergence (융복합적인 웰리스를 위한 야채수프의 인간 암세포 증식 억제효과)

  • Sim, Jae-Geun;Lee, Jae-Hyeok;Park, Jeong-Suk
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.543-548
    • /
    • 2015
  • The present sturdy was designed to determine the effect of the antiproliferation in human cancer cells using the ordinary vegetable soup (VS), the soup with broccoli (VSB) and the soup with tomatoes(VST). Human cancer cells identify the cancer cell growth with MTS, using stomach cancer cell line(AGS), human promyelocytic leukemia (HL-60) and lung cancer cell line (A549). VSB and VST are effective on the cancer cell growth inhibition activities of AGS and have a significance compared with VS. VST has a significance with HL-60 and VSB works well in A549 more than VS. Mixed vegetable soup is considered to applicate with functional materials and using for wellness life.

Trichostatin A-induced Apoptosis is Mediated by Krüppel-like Factor 4 in Ovarian and Lung Cancer

  • Zohre, Sadeghi;Kazem, Nejati-Koshki;Abolfazl, Akbarzadeh;Mohammad, Rahmati-Yamchi;Aliakbar, Movassaghpour;Effat, Alizadeh;Zahra, Davoudi;Hassan, Dariushnejad;Nosratollah, Zarghami
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6581-6586
    • /
    • 2014
  • Background: The istone deacetylase (HDAC) inhibitor trichostatin A (TSA) is known to mediate the regulation of gene expression and antiproliferation activity in cancer cells. Kr$\ddot{u}$ppel-like factor 4 (klf4) is a zinc finger-containing transcription factor of the SP/KLF family, that is expressed in a variety of tissues and regulates cell proliferation, differentiation, tumorigenesis, and apoptosis. It may either either function as a tumor suppressor or an oncogene depending on genetic context of tumors. Aims: In this study, we tested the possibility that TSA may increase klf4 expression and cancer cell growth inhibition and apoptosis in SKOV-3 and A549 cells. Materials and Methods: The cytotoxicity of TSA was determined using the MTT assay test, while klf4 gene expression was assessed by real time PCR andto ability of TSA to induce apoptosis using a Vybrant Apoptosis Assay kit. Results: Our results showed that TSA exerted dose and time dependent cytotoxicity effect on SKOV-3 and A549 cells. Moreover TSA up-regulated klf4 expression. Flow cytometric analysis demonstrated that apoptosis was increased after TSA treatment. Conclusions: Taken together, this study showed that TSA increased klf4 expression in SKOV3 and A549 cell lines, consequently, klf4 may played a tumor-suppressor role by increasing both cell growth inhibition and apoptosis. This study sheds light on the details of molecular mechanisms of HDACI-induced cell cycle arrest and apoptosis.

The GSK-$3{\beta}$/Cyclin D1 Pathway is Involved in the Resistance of Oral Cancer Cells to the EGFR Tyrosine Kinase Inhibitor ZD1839

  • Jeon, Nam Kyeong;Kim, Jin;Lee, Eun Ju
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • Activation of the epidermal growth factor receptor (EGFR) and downstream signaling pathways have been implicated in causing resistance to EGFR-targeted therapy in solid tumors, including the head and neck tumors. To investigate the mechanism of antiproliferation to EGFR inhibition in oral cancer, we compared EGFR tyrosine kinase inhibitor (Gefitinib, Iressa, ZD1839) with respect to its inhibitory effects on three kinases situated downstream of EGFR: MAPK, Akt, and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$). We have demonstrated that ZD1839 induces growth arrest and apotosis in oral cancer cell lines by independent of EGFR-mediated signaling. An exposure of oral cancer cells to ZD1839 resulted in a dose dependent up-regulation of the cyclin-dependent kinase inhibitor p21 and p27, down regulation of cyclin D1, inactivation of GSK-$3{\beta}$ and of active MAPK. In resistant cells, GSK-$3{\beta}$ is constitutively active and its activity is negatively regulated primarily through Ser 9 phosphorylation and further enhanced by Tyr216 phosphorylation. These results showed that the resistance to the antiproliferative effects of ZD1839, in vitro was associated with uncoupling between EGFR and MAPK inhibition, and that GSK-$3{\beta}$ activation and degradation of its target cyclin D1 were indicators of high cell sensitivity to ZD1839. In conclusion, our data show that the uncoupling of EGFR with mitogenic pathways can cause resistance to EGFR inhibition in oral cancer.