• 제목/요약/키워드: antiproliferation activity

검색결과 54건 처리시간 0.024초

대장암 세포주 SNU C2A에서 etoposide 처리에 의한 apoptosis 유도 (Induction of apoptosis by etoposide treatment in colon cancer cell line SNU C2A)

  • 정지연;나윤숙;정호철;오상진
    • IMMUNE NETWORK
    • /
    • 제1권3호
    • /
    • pp.221-229
    • /
    • 2001
  • Background: Inactivation of tumor suppressor genes is believed to be important in the development of many human malignancies. Recently, several lines of evidence have indicated that the wild type p53 gene located at 17p13.3, may function as a tumor suppressor gene and that a mutant p53 gene could promote transformation by inactivating normal p53 function in a dominant negative fashion. These broad spectrum of p53 mutation in human cancers provide that mutant p53 and their protein may be potential targets of tumor diagnostic and therapeutic interventions. Method: Colony formation was performed to investigate growth suppressional ability. p53 expression pattern was examined by western blot and p53-mediated transactivation ability was assessed by CAT activity. SNU C2A cells were observed in apoptotic aspects induced by etoposide and $H_2O_2$ treatment, detecting sensitivity on agent, DNA fragmentation through agarose gel, chromatin condensation by fluorescence microscope, and cell cycle distribution by FACS. Result: 1) p53 mutant his179arg ($histidine{\rightarrow}arginine$) detected in SNU C2A cells lost transcriptional activity and growth suppression ability, showing dominant negative effect on its wild type p53. 2) Etoposide-treated SNU C2A cells induced apoptosis, exhibiting dramatic reduction of cell growth, DNA fragmentation, nuclear condensation formation of apoptotic body and increment of sub-G1 cell fraction. 3) Etoposide and $H_2O_2$-treated SNU C2A cells have no high increase of p53 expression and overexpressed p53 protein changed localization, from cytoplasm to nucleus. Also, p53-mediated transcriptional activity was increased by agents-treatment. Conclusion: SNU C2A cells coexpress wild-type and mutant p53 protein induced apoptosis in the condition on DNA damage, through localizational shift from cytoplasm to nucleus of p53 protein rather than the induction of p53 protein. SNU C2A cells derived mutant p53 his179arg abrogated both the growth supression ability and transactivational activity, showing inhibition effect on transcriptional activity of wild type p53, but did not repress the activity of wild type p53 in SNU C2A cells owing to dominant activity of wild type. These cell condition may provide new gene therapeutic implications leading effective antiproliferation of cell when mutant and wild-type p53 protein were co-expressed in cell.

  • PDF

Antimicrobial Properties and Cytotoxicity of Sulfated (1,3)-β-D-Glucan from the Mycelium of the Mushroom Ganoderma lucidum

  • Wan-Mohtar, Wan Abd Al Qadr Imad;Young, Louise;Abbott, Grainne M.;Clements, Carol;Harvey, Linda M.;McNeil, Brian
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.999-1010
    • /
    • 2016
  • Ganoderma lucidum BCCM 31549 has a long established role for its therapeutic activities. In this context, much interest has focused on the possible functions of the (1,3)-β-D-glucan (G) produced by these cultures in a stirred-tank bioreactor and extracted from their underutilized mycelium. In the existing study, we report on the systematic production of G, and its sulfated derivative (GS). The aim of this study was to investigate G and its GS from G. lucidum in terms of their antibacterial properties and cytotoxicity spectrum against human prostate cells (PN2TA) and human caucasian histiocytic lymphoma cells (U937). 1H NMR for both G and GS compounds showed β-glycosidic linkages and structural similarities when compared with two standards (laminarin and fucoidan). The existence of characteristic absorptions at 1,170 and 867 cm-1 in the FTIR (Fourier Transform Infrared Spectroscopy) for GS demonstrated the successful sulfation of G. Only GS exhibited antimicrobial activity against a varied range of test bacteria of relevance to foodstuffs and human health. Moreover, both G and GS did not show any cytotoxic effects on PN2TA cells, thus helping demonstrate the safety of these polymers. Moreover, GS showed 40% antiproliferation against cancerous U937 cells at the low concentration (60 μg/ ml) applied in this study compared with G (10%). Together, this demonstrates that sulfation clearly improved the solubility and therapeutic activities of G. The water-soluble GS demonstrates the potential multifunctional effects of these materials in foodstuffs.

Corticosterone에 의해 유도된 인간의 신경모세포종 SH-SY5Y 세포 증식 억제를 완화시키는 맥문동 열수 추출물의 효과에 관한 연구 (Attenuation of the Corticosterone-induced Antiproliferative Effect on Human Neuroblastoma SH-SY5Y Cells Using Hot-water Extract from Liriope muscari)

  • 이종규;김상보;서용배;김군도
    • 생명과학회지
    • /
    • 제28권5호
    • /
    • pp.517-523
    • /
    • 2018
  • 만성적 스트레스가 있는 상황에서, 과잉 생산된 cortisol은 glucocorticoid receptor (GR)를 활성화시킴으로써 해마(hippocampus)에 있는 신경 세포에 손상을 줄 수 있다. Cortisol을 생성하지 못하는 동물들의 경우, corticosterone이 스트레스 호르몬의 역할을 하는 것으로 알려져 있다. 한편, 인간의 경우, corticosterone은 aldosterone의 전구물질 이거나 cortisol과 비슷한 특성을 가지는 하나의 glucocorticoid로만 여겨져 왔다. 최근 인간을 대상으로 cortisol과 dexamethasone과 같은 합성 glucocorticoid의 기능에 관한 연구가 많이 이루어져 왔으나, corticosterone의 정확한 기능에 대하여 많이 알려져 있지 않다. 본 연구에서 corticosterone을 여러 농도로 SH-SY5Y 세포에 처리한 후 24시간과 48시간 때 viability를 조사한 결과, 높은 농도($500{\mu}M$$1,000{\mu}M$)에서 SH-SY5Y 세포의 성장 억제가 관찰된 반면, 낮은 농도($100{\mu}M$)에선 그 효과가 나타나지 않았다. 맥문동, 오미자, 복신 열수 추출물에 대한 세포 독성을 실시한 결과, 세 시료 모두 농도가 높아질수록 높은 세포 독성을 보였다. 한편, $500{\mu}g/ml$의 맥문동은 corticosterone에 의해 유도된 세포 성장 억제를 완화시켜 세포 성장을 회복시키는 효과를 보였다. 마지막으로, 맥문동 $500{\mu}g/ml$에 오미자와 복신의 농도를 달리하여 제조한 여러 혼합물의 시너지 효과를 알아본 결과, 대부분 혼합물이 약간의 효과를 보이긴 했으나, 음성 대조군 수준만큼 회복되지는 않았다.

홍경천 추출물의 생리활성 (Biological Activity of the Fractions Extracted from Rhodiola dumulosa)

  • 박경욱;윤재호;김재용;정창호;박채규;송원섭;서권일
    • 한국식품저장유통학회지
    • /
    • 제12권5호
    • /
    • pp.496-500
    • /
    • 2005
  • 홍경천(Rhodiola dumulosa)을 기능성 식품소재로 개발하기 위하여 홍경천(뿌리)을 80% 메탄올로 열수 추출하여 용매 분획한 후 이들에 대한 항산화, 암세포 성장 억제 및 대식세포의 면역활성 등과 같은 기능성을 조사하였다. 홍경천 메탄올 추출물의 헥산, 에틸 아세테이트, 부탄올, 메탄올 및 물 분획물의 수소공여능은 100 ${\mu}g/mL$의 농도에서 각각 28.30, 53.21, 35.48, 42.64 및 21.14% 로서 에틸아세테이트 분획물이 가장 높았으며, 이는 합성 항산화제인 BHT와 비슷한 항산화 효과를 나타내었다. A549 및 SW480 와 같은 암세포에 용매 분획물 1, 10 및 100 ${\mu}g/mL$의 농도로 48시간 처리한 결과 에틸아세테이트 분획물이 다른 분획물에 비하여 암세포주의 성장을 강하게 억제하였으며, 그 활성은 농도 의존적으로 나타났다. 또한 100 ${\mu}g/mL$의 농도로 48시간 동안 에틸아세테이트 분획물을 암세포에 처리시 처리구에서의 암세포는 뚜렷한 세포수의 감소와 함께 심한 형태학적 변화가 관찰되었다. 대식세포주(RAW 264.7)에 1, 10 및 50 ${\mu}g/mL$의 농도로 용매 분획물을 처리한 후 NO의 생성량을 측정한 결과 10 μg/mL 이상의 농도에서 메탄올 분획물에서 NO 생성을 강하게 유도하였다. 따라서 본 결과는 홍경천의 기능성 식품소재로의 활용 가능성을 시사한다.

Effect of Soy Isoflavones on the Expression of $TGF-{\beta}1$ and Its Receptors in Cultured Human Breast Cancer Cell Lines

  • Kim Young-Hwa;Jin Kyong-Suk;Lee Yong-Woo
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.175-183
    • /
    • 2005
  • The two major isoflavones in soy, genistein and daidzein, are well known to prevent hormone-dependent cancers by their anti estrogenic activity. The exact molecular mechanisms for the protective action are, however, not provided yet. It has been reported that genistein and daidzein have a potential anticancer activity through their antiproliferative effect in many hormone-dependent cancer cell lines. Transforming growth $factor-\beta1(TGF-\beta1)$ has also been found to have cell growth inhibitory effect, especially in mammary epithelial cells. This knowledge led to a hypothetical mechanism that the soy isoflavones-induced growth inhibitory effect can be derived from the regulation of $TGF-\beta1$ and $TGF-\beta$ receptors. In order to test this hypothesis, the effects of the soy isoflavones at various concentrations and periods on the expression of $TGF-\beta1$and $TGF-\beta$ receptors were investigated by using Northern blot analysis in human breast carcinoma epithelial cell lines, an estrogen receptor positive cell line (MCF-7) and an estrogen receptor negative cell line (MDA-MB-231). As a result, only genistein has shown a profound dose-dependent effect on $TGF-\beta1$ expression in the $ER^+$ cell line within the range of doses tested, and the expression levels are correspondent to their inhibitory activities of cell growth. Moreover, daidzein showed down-regulated $TGF-\beta1$ expression at a low dose, the cell growth proliferation was promoted at the same condition. Therefore, antiproliferative activity of the soy isoflavones can be mediated by $TGF-\beta1$ expression, and the effects are mainly, if not all, occurred by ER dependent pathway. The expression of $TGF-\beta$ receptors was induced at a lower dose than the one for $TGF-{\beta}1$ induction regardless of the presence of ER, and the expression patterns are similar to those of the cell growth inhibition. These results indicated that the regulation of $TGF-\beta$ receptor expression as well, prior to $TGF-\beta1$ expression, may be involved in the antiproliferative activity of soy isoflavones. Little or no expression of $TGF-\beta$ receptors was found in the MCF-7 and MDA-MB-231 cells, suggesting refractory properties of the cells to growth inhibitory effect of the $TGF-\beta$. The soy isoflavones can seemingly restore the sensitivity of growth inhibitory responses to $TGF-\beta1$ by re-inducing $TGF-\beta$ receptors expression. In conclusions, our findings presented in this study show that the antitumorigenic activity of the soy isoflavones could be mediated by not only $TGF-\beta1$induction but $TGF-\beta$ receptor restoration. Thus, soy isoflavones could be good model molecules to develop new nonsteroidal antiestrogenic chemopreventive agents, associated with, regulation of $TGF-\beta$ and its receptors.

  • PDF

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee;Jin Ho Choi;Kyung-Min Lee;Min Woo Lee;Ja-Lok Ku;Dong-Chan Oh;Yern-Hyerk Shin;Dae Hyun Kim;In Rae Cho;Woo Hyun Paik;Ji Kon Ryu;Yong-Tae Kim;Sang Hyub Lee;Sang Kook Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.123-135
    • /
    • 2024
  • Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.

매실 식초 분말의 항산화 및 유방암 세포주 증식 억제 효과 (Antioxidant and Antiproliferating Effects of Prunus mume Vinegar Powder on Breast Cancer Cells)

  • 박울림;김정호;허지안;원영선;서권일
    • 생명과학회지
    • /
    • 제31권2호
    • /
    • pp.149-157
    • /
    • 2021
  • 매실은 주로 한국, 일본, 중국 같은 동아시아에 분포하고, 매실 나무의 열매는 한약재나 식재료로 쓰여왔다. 그러나 매실 열매를 이용한 이전의 연구는 대부분 추출물 형태로 진행하였기에, 많은 식품학적인 활용을 위해 매실 열매의 다양한 가공형태에서의 연구가 필요한 실정이다. 본 연구에선 분무 건조한 매실 식초 분말(SPP)의 이화학적 특성과 생리활성을 평가하였다. SPP의 이화학적 특성에서 당도, pH, 총산도 및 수분 함량은 각각 8.90 °Brix, 3.19, 1.05% 및 3.07%로 확인되었다. SPP의 항산화 활성은 DPPH 라디칼 소거활성, 환원력 및 H2O2 소거활성에서 각각 65.55%, 1.48 및 48.07%로 양성 대조군과 비슷하거나 다소 낮게 유의적으로 높은 항산화 활성을 나타냈다. 또한 SPP를 농도별로 처리함에 따라 MDA-MB-231 인체 유방암 세포에서 유의적인 세포 증식 억제 활성을 보였다. 형태학적 연구에서 MDA-MB-231 세포에서 농도의존적으로 세포의 형태학적 변화가 확인되었고, apoptotic body와 핵의 응축을 나타냈다. 총 폴리페놀 및 플라보노이드 함량은 59.58 ㎍/g과 57.56 ㎍/g으로 확인되었다. 이러한 연구 결과를 통해 분무 건조한 매실 식초 분말은 항산화 및 암세포 증식억제능이 있는 기능성 식품 및 천연 의약품 소재로 활용이 가능할 것으로 생각된다.

융복합적인 웰리스를 위한 야채수프의 인간 암세포 증식 억제효과 (Antiproliferative Activity of Vegetable Soup in Human Cancer cells for Wellness Convergence)

  • 심재근;이재혁;박정숙
    • 디지털융복합연구
    • /
    • 제13권8호
    • /
    • pp.543-548
    • /
    • 2015
  • 본 논문은 야채수프의 인간 암세포 증식 억제효과를 살펴보는 데 목적이 있다. 본 연구는 일반적으로 사용되는 야채수프 (VS)와 브로콜리가 들어간 야채수프 (VSB), 토마토가 들어간 야채스프 (VST)를 이용하여 암세포 증식 억제효과를 살펴보았다. 인간 암세포주는 위암 (AGS)세포주, 급성 전골수성 백혈병 (HL-60)세포주, 폐암 (A549) 세포주를 사용하였으며 MTS방법으로 암세포 증식 억제를 확인하였다. 위암 세포주는 VSB, VST에서 암세포 증식 억제효과가 있었으며 VS에 비해 유의성이 있었다. 급성 전골수성 백혈병 세포주는 VST에서 유의성 있는 억제를 보였으며 폐암 세포주는 VSB에서 VS보다 탁월한 효과를 보였다. 혼합 야채스프는 기능성 소재로 활용과 융복합적인 웰리스를 위한 기초 자료로 활용이 가능하다고 사료된다.

Trichostatin A-induced Apoptosis is Mediated by Krüppel-like Factor 4 in Ovarian and Lung Cancer

  • Zohre, Sadeghi;Kazem, Nejati-Koshki;Abolfazl, Akbarzadeh;Mohammad, Rahmati-Yamchi;Aliakbar, Movassaghpour;Effat, Alizadeh;Zahra, Davoudi;Hassan, Dariushnejad;Nosratollah, Zarghami
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6581-6586
    • /
    • 2014
  • Background: The istone deacetylase (HDAC) inhibitor trichostatin A (TSA) is known to mediate the regulation of gene expression and antiproliferation activity in cancer cells. Kr$\ddot{u}$ppel-like factor 4 (klf4) is a zinc finger-containing transcription factor of the SP/KLF family, that is expressed in a variety of tissues and regulates cell proliferation, differentiation, tumorigenesis, and apoptosis. It may either either function as a tumor suppressor or an oncogene depending on genetic context of tumors. Aims: In this study, we tested the possibility that TSA may increase klf4 expression and cancer cell growth inhibition and apoptosis in SKOV-3 and A549 cells. Materials and Methods: The cytotoxicity of TSA was determined using the MTT assay test, while klf4 gene expression was assessed by real time PCR andto ability of TSA to induce apoptosis using a Vybrant Apoptosis Assay kit. Results: Our results showed that TSA exerted dose and time dependent cytotoxicity effect on SKOV-3 and A549 cells. Moreover TSA up-regulated klf4 expression. Flow cytometric analysis demonstrated that apoptosis was increased after TSA treatment. Conclusions: Taken together, this study showed that TSA increased klf4 expression in SKOV3 and A549 cell lines, consequently, klf4 may played a tumor-suppressor role by increasing both cell growth inhibition and apoptosis. This study sheds light on the details of molecular mechanisms of HDACI-induced cell cycle arrest and apoptosis.

The GSK-$3{\beta}$/Cyclin D1 Pathway is Involved in the Resistance of Oral Cancer Cells to the EGFR Tyrosine Kinase Inhibitor ZD1839

  • Jeon, Nam Kyeong;Kim, Jin;Lee, Eun Ju
    • 대한의생명과학회지
    • /
    • 제20권2호
    • /
    • pp.85-95
    • /
    • 2014
  • Activation of the epidermal growth factor receptor (EGFR) and downstream signaling pathways have been implicated in causing resistance to EGFR-targeted therapy in solid tumors, including the head and neck tumors. To investigate the mechanism of antiproliferation to EGFR inhibition in oral cancer, we compared EGFR tyrosine kinase inhibitor (Gefitinib, Iressa, ZD1839) with respect to its inhibitory effects on three kinases situated downstream of EGFR: MAPK, Akt, and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$). We have demonstrated that ZD1839 induces growth arrest and apotosis in oral cancer cell lines by independent of EGFR-mediated signaling. An exposure of oral cancer cells to ZD1839 resulted in a dose dependent up-regulation of the cyclin-dependent kinase inhibitor p21 and p27, down regulation of cyclin D1, inactivation of GSK-$3{\beta}$ and of active MAPK. In resistant cells, GSK-$3{\beta}$ is constitutively active and its activity is negatively regulated primarily through Ser 9 phosphorylation and further enhanced by Tyr216 phosphorylation. These results showed that the resistance to the antiproliferative effects of ZD1839, in vitro was associated with uncoupling between EGFR and MAPK inhibition, and that GSK-$3{\beta}$ activation and degradation of its target cyclin D1 were indicators of high cell sensitivity to ZD1839. In conclusion, our data show that the uncoupling of EGFR with mitogenic pathways can cause resistance to EGFR inhibition in oral cancer.