• 제목/요약/키워드: antioxidant stress

검색결과 1,811건 처리시간 0.031초

Pharmacology of enantiomers of higenamine and related tetrahydroisoquinolines

  • Park, Min-Kyu;Huh, Ja-Myung;Lee, Young-Soo;Kang, Young-Jin;Seo, Han-Geuk;Lee, Jae-Heun;Park, Hye-Sook-Yun-;Lee, Duck-Hyung;Chang, Ki-Churl
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2004년도 Annual Meeting of KSAP : New Drug Development from Natural Products
    • /
    • pp.3-10
    • /
    • 2004
  • Oxidative stress is a constant threat to all living organisms and an immense repertoire of cellular defense systems is being employed by most pro- and eukaryotic systems to eliminate or to attenuate oxidative stress. Ischemia and reperfusion is characterized by both a significant oxidative stress and characteristic changes in the antioxidant defense. Heme oxigenase-l (HO-l) is up-regulated by various stimuli including oxidative stress so that it is thought to participate in general cellular defense mechanisms against ischemic injury in mammalian cells. Higenamine, an active ingredient of Aconite tuber, has been shown to have antioxidant activity along with inhibitory action of inducible nitric oxide synthase (iNOS) expression in various cells. In the present study, we investigated whether higenamine and related analogs protect cells from oxidative cellular injuries by modulating antioxidant enzymes, such as HO-l, MnSOD etc. R-form of YS-51 was the most potent inducer of HO-l in bovine endothelial cells, which inhibited apoptotic cell death by H$_2$O$_2$. HO-1 induction by YS 51 was mediated by PI3 kinase activation in which PKA- as well as PKG pathway is considered as important regulators. YS-51 also induced Mn-SOD mRNA expression by activating c-jun N-terminal kinase in endothelial cells and Hela cells. In ROS 17/2.1 cells, higenamine and enetiomers of related compounds inhibited iNOS expression by cytokine mixtures. Taken together, higenamine and related compounds can be developed as possible protective agents from oxidative cell injury or death.

  • PDF

Relief of the negative effects of heat stress on semen quality, reproductive efficiency and oxidative capacity of rabbit bucks using different natural antioxidants

  • El-Ratel, Ibrahim Talat;Attia, Kandil Abdel Hai;El-Raghi, Ali Ali;Fouda, Sara Fikry
    • Animal Bioscience
    • /
    • 제34권5호
    • /
    • pp.844-854
    • /
    • 2021
  • Objective: The potential of extra virgin olive oil (EVOO), betaine (BET), and ginger (GIN), as natural antioxidants, in reducing negative effects of heat stress on physiological responses, antioxidant capacity, semen quality and fertility of bucks under heat stress were investigated. Methods: Forty adult Animal Production Research Institute line rabbit bucks were distributed randomly into four experimental treatments of ten rabbits each. The first treatment was fed the commercial pellet diet (CPD) without supplementation and served as a control. The other three treatments were fed CPD supplemented with EVOO (300 mg), BET (1,000 mg), and GIN (200 mg) per kg diet for 3 consecutive months during the summer season. Results: Supplementation of EVOO, BET, or GIN improved (p<0.05) the sexual desire, progressive motility, vitality, intact acrosome and membrane integrity, sperm cell concentration, sperm outputs and fertility. Seminal plasma total proteins, globulin, total antioxidant capacity, glutathione and glutathione S-transferase, and initial fructose increased (p<0.05), while total lipids, aspartate and alanine aminotransferases and malondialdehyde decreased (p<0.05) compared with the control. In comparing the natural antioxidants treatments, GIN evoked the largest improvement. Conclusion: The inclusion of GIN (200 mg/kg diet) appeared to improve the sexual desire, semen quality and oxidative stress of bucks. This may be a beneficial supplement for the management of rabbit bucks used in natural mating or artificial insemination.

Effects of Antioxidant on Oxidative Stress and Autophagy in Bronchial Epithelial Cells Exposed to Particulate Matter and Cigarette Smoke Extract

  • Hur, Jung;Rhee, Chin Kook;Jo, Yong Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • 제85권3호
    • /
    • pp.237-248
    • /
    • 2022
  • Background: We evaluated the effect of particulate matter (PM) and cigarette smoke extract (CSE) on bronchial epithelial cell survival, as well as oxidative stress and autophagy levels. Moreover, we aimed to assess the effect of the antioxidant N-acetylcysteine (NAC) on the adverse effects of PM and CSE exposure. Methods: Normal human bronchial epithelial cells (BEAS-2B cells) were exposed to urban PM with or without CSE, after which cytotoxic effects, including oxidative stress and autophagy levels, were measured. After identifying the toxic effects of urban PM and CSE exposure, the effects of NAC treatment on cell damage were evaluated. Results: Urban PM significantly decreased cell viability in a concentration-dependent manner, which was further aggravated by simultaneous treatment with CSE. Notably, pretreatment with NAC at 10 mM for 1 hour reversed the cytotoxic effects of PM and CSE co-exposure. Treatment with 1, 5, and 10 mM NAC was shown to decrease reactive oxygen species levels induced by exposure to both PM and CSE. Additionally, the autophagy response assessed via LC3B expression was increased by PM and CSE exposure, and this also attenuated by NAC treatment. Conclusion: The toxic effects of PM and CSE co-exposure on human bronchial epithelial cells, including decreased cell viability and increased oxidative stress and autophagy levels, could be partly prevented by NAC treatment.

Effect of Sofosbuvir on rats' ovaries and the possible protective role of vitamin E: biochemical and immunohistochemical study

  • Neven A. Ebrahim;Hussein Abdelaziz Abdalla;Neimat Abd Elhakam Yassin;Aya Elsayed Maghrabia;Amira Ibrahim Morsy
    • Anatomy and Cell Biology
    • /
    • 제56권4호
    • /
    • pp.526-537
    • /
    • 2023
  • Hepatitis C virus (HCV) infection is a major health problem worldwide and its eradication is mandatory. Direct acting HCV polymerase inhibitors, such as Sofosbuvir (SOF), is an effective regimen. However, it has some side effects like mutagenesis, carcinogenesis, and the impairment of testicular function. It is important to evaluate the safety of SOF on the ovary, as there are no studies yet. Increasing the production of Reactive Oxygen Species (ROS), causes oxidative stress, which affects ovulation process, female reproduction, and fertility. Accumulation of SOF in the cells was demonstrated to promote ROS generation. Vitamin E (Vit E) is an antioxidant agent that has an essential role in the female reproductive system, its deficiency can cause infertility. We explored the effect of SOF treatment alone and co-treated with Vit E on ovarian ROS level and ovarian morphology experimentally using biochemical and immunohistochemical studies. Significant changes in oxidative stress markers; nitric oxide and malondialdehyde lipid peroxidation, antioxidant enzymes; catalase, super oxide dismutase, and reduced glutathione, proliferating markers; proliferation cell nuclear antigen and Ki-67 antigen and caspase 3 apoptotic marker were demonstrated. It was shown that where SOF induced oxidative stress, it also aggravated ovarian dysfunction. The essential role of Vit E as an antioxidant agent in protecting the ovarian tissue from the effect of oxidative stress markers and preserving its function was also displayed. This could be guidance to add Vit E supplements to SOF regimens to limit its injurious effect on ovarian function.

고온 스트레스에 대한 미꾸라지(Misgurnus mizolepis) 항산화 효소 유전자들의 발현 특징 (Transcriptional Response of Major Antioxidant Enzyme Genes to Heat Stress in Mud Loach (Misgurnus mizolepis))

  • 조영선;이상윤;방인철;김동수;남윤권
    • 한국양식학회지
    • /
    • 제19권3호
    • /
    • pp.157-165
    • /
    • 2006
  • 우리나라 주요 담수 어종인 미꾸라지를 ecotoxicogenomic 연구 모델 어류로 개발하기 위한 연구의 일환으로 본 어종이 고온 스트레스 자극에 노출되었을때 야기되는 산화성 스트레스를 검출하고자 항산화 효소(antioxidant enzyme; AOE) 유전자의 발현 양상을 분석하였다. 주요 항산화 효소인 superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) 및 glutathione peroxidases (GPXs)의 transcript들을 특이적으로 정량화할 수 있는 semi-quantitative RT-PCR, real-time PCR 또는 northern blot분석을 통해 $23^{\circ}C$에서 $32^{\circ}C$까지 설정된 실험어의 간 조직내 AOE유전자들의 mRNA level을 분석하였다. 고온에 노출되었을 때 본 어종의 AOE들은 일반적으로 증가된 유전자 발현 양상을 나타내었고, 특히 SOD (2배)와 plasma GPX (3배) 유전자가 가장 유의적인 mRNA 증가를 나타내었다. GST의 경우 상대적으로 적은 증가량을 나타내었고 CAT의 경우 고온자극에 반응하지 않았다. 본 어종은 $29^{\circ}C$ 이상에서 AOE 유전자의 발현 증가를 나타내었고 $32^{\circ}C$에 노출되었을 때 1일째부터 SOD와 plasma GPX mRNA의 증가가 관찰되었다.

Protective effects of blueberry drink on cognitive impairment induced by chronic mild stress in adult rats

  • Guo, Qian;Kim, Young-Nam;Lee, Bog-Hieu
    • Nutrition Research and Practice
    • /
    • 제11권1호
    • /
    • pp.25-32
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Stress-induced cognitive impairment is related to the suppression of hippocampal neurogenesis that results from an increase of oxidative stress. Therefore, the aim of this study was to investigate the effects of administration of a blueberry drink, having a high antioxidant power, on the cognitive performance of adult rats exposed to chronic mild stress. MATERIALS/METHODS: Twelve-week-old male Sprague-Dawley rats (n = 48) were randomly divided into four groups: control (CO), stress (ST), control + 5% blueberry drink (CO + B), and stress + 5% blueberry drink (ST + B). After eight weeks, the cognitive performance was assessed using a multiple T-maze water test. Levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and ascorbic acid were measured in the brain, and catecholamine concentrations were measured in plasma. RESULTS: The brain weights of the rats from the ST and ST + B groups were significantly lower than those of the rats from the CO and CO + B groups. The cognitive performance of the ST group was impaired when compared to that of the CO group. This impairment was significantly improved by the blueberry drink supplementation (P < 0.05). The brain SOD and CAT concentrations were not influenced by the stress or by the blueberry drink. However, the brain levels of GPx and ascorbic acid were significantly lower in the ST group than those in the CO group and were increased by the blueberry drink supplementation. The plasma catecholamine concentrations were affected by chronic mild stress and by the blueberry drink. The plasma norepinephrine and dopamine concentrations were decreased by the chronic stress and improved by the blueberry drink supplementation. The plasma epinephrine level was only influenced by the stress. CONCLUSION: These findings suggest that the blueberry drink may protect against the cognitive impairment induced by chronic mild stress.

Comparative Response of Callus and Seedling of Jatropha curcas L. to Salinity Stress

  • Kumar, Nitish;Kaur, Meenakshi;Pamidimarri, D.V.N. Sudheer;Boricha, Girish;Reddy, Muppala P.
    • Journal of Forest and Environmental Science
    • /
    • 제24권2호
    • /
    • pp.69-77
    • /
    • 2008
  • Jatropha curcas L. is an oil bearing species with many uses and considerable economic potential as a biofuel crop. Salt stress effect on growth, ion accumulation, contents of protein, proline and antioxidant enzymes activity was determined in callus and seedling to understand the salt tolerance of the species. Exposure of callus and seedling to salt stress reduced growth in a concentration dependent manner. Under salt stress Na content increased significantly in both callus and seedling whereas, differential accumulation in the contents of K, Ca, and Mg was observed in callus and seedling. Soluble protein content differed significantly in callus as compared to seedling, however proline accumulation remained more or less constant with treatments. The proline concentration was ~2 to 3 times more in callus than in seedling. Salt stress induced qualitative and quantitative differences in superoxide dismutase (SOD; E.C. 1.15.1.1) and peroxidase (POX; E.C. 1.11.1.7) in callus and seedling. Salt induced changes of the recorded parameters were discussed in relation to salinity tolerance.

  • PDF

청간해주탕(淸肝解酒湯)의 항산화 작용에 관한 실험적 연구 (Experimental Study of Chungganhaeju-tang (Qingganjiejiu-tang) on Oxidative Stress)

  • 이지은;이장훈
    • 대한한방내과학회지
    • /
    • 제32권2호
    • /
    • pp.188-202
    • /
    • 2011
  • Objectives : Oxidative stress seems to play a major role in mechanisms by which ethanol causes liver injury. Previous studies have shown that treatment with Chungganhaeju-tang (Qingganjiejiu-tang, CGHJT) has protective effects on alcoholic liver disease. The aim of this study was to investigate the effects of Chungganhaeju-tang on oxidative stress. Materials and Methods : In vitro, we evaluated the inhibitory activities of CGHJT on DPPH (1,1-diphenyl-2-picryl-hydrazyl), xanthine oxidase, trypsin, and hyaluronidase, and measured cell viability, and proliferation. In the cell culture model, we measured the activities of superoxide dismutase (SOD), and catalase (CAT) after CGHJT treatment in C34 and E47 cell lines, HepG2 cells transfected with/without the cytochrome P450 2E1 (CYP2E1) gene. In vivo, we measured malondialdehyde levels in the liver tissue and alcohol concentration in the blood. Results : CGHJT showed significant free radical scavenging activity against DPPH and xanthine oxidase in the in vitro study, and increased cell viability, proliferation, and activities of superoxide dismutase, catalase in C34 and in E47 cell lines. CGHJT reduced malondialdehyde levels and blood alcohol concentration in vivo, as well. Conclusions : This study suggests that CGHJT has antioxidant effects on oxidative stress by reducing lipid peroxidation and inhibiting the ethanol induced suppression of antioxidant enzyme activities.

Inactivation of Photosystem I in Cucumber Leaves Exposed to Paraquat-Induced Oxidative Stress

  • Park, Sun-Mi;Suh, Key-Hong;Kim, Jae-sung;Park, Youn-Il
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.13-17
    • /
    • 2001
  • Cucumber leaves subjected to light chilling stress exhibit a preferential inactivation of photosystem(PS) I relative to PSII, resulting in the photoinhibition of photosynthesis. In light chilled cucumber leaves, Cu/Zn-Superoxide dismutase(SOD) is regarded as a primary target of the light chilling stress and its inactivation is closely related to the increased production of reactive oxygen species. In the present study, we further explored that inactivation of PSI in cucumber leaves is not a light chilling specific, but general to various oxidative stresses. Oxidative stress in cucumber leaves was induced by treatment of methylviologen(MV), a producer of reactive oxygen species in chloroplasts. MV treatment decreased the maximal photosynthetic O$_2$ evolution, resulting in the photoinhibition of photosynthesis. The photoinhibition of photosynthesis was attributable to the decline in PSI functionality determined in vivo by monitoring absorption changes around 820 nm. In addition, MV treatment inactivated both antioxidant enzymes Cu-Zn-superoxide dismutase and ascorbate peroxidase known sensitive to reactive oxygen species. From these results, we suggest that chloroplast antioxidant enzymes are the primary targets of photooxidative stress, followed by subsequent inactivation of PSI.

  • PDF

Tetrahydropteridines possess antioxidant roles to guard against glucose-induced oxidative stress in Dictyostelium discoideum

  • Park, Seon-Ok;Kim, Hye-Lim;Lee, Soo-Woong;Park, Young Shik
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.86-91
    • /
    • 2013
  • Glucose effects on the vegetative growth of Dictyostelium discoideum Ax2 were studied by examining oxidative stress and tetrahydropteridine synthesis in cells cultured with different concentrations (0.5X, 7.7 g $L^{-1}$; 1X, 15.4 g $L^{-1}$; 2X, 30.8 g $L^{-1}$) of glucose. The growth rate was optimal in 1X cells (cells grown in 1X glucose) but was impaired drastically in 2X cells, below the level of 0.5X cells. There were glucose-dependent increases in reactive oxygen species (ROS) levels and mitochondrial dysfunction in parallel with the mRNA copy numbers of the enzymes catalyzing tetrahydropteridine synthesis and regeneration. On the other hand, both the specific activities of the enzymes and tetrahydropteridine levels in 2X cells were lower than those in 1X cells, but were higher than those in 0.5X cells. Given the antioxidant function of tetrahydropteridines and both the beneficial and harmful effects of ROS, the results suggest glucose-induced oxidative stress in Dictyostelium, a process that might originate from aerobic glycolysis, as well as a protective role of tetrahydropteridines against this stress.