• Title/Summary/Keyword: antioxidant gene expression

Search Result 355, Processing Time 0.02 seconds

Investigation of Antioxidant Activity of Houttuyniae Herba and its Effect on 5α-reductase Gene Expression in Dermal Papilla Cells (어성초(魚腥草)의 항산화 효능 확인 및 모유두 세포의 5α-reductase 유전자 발현에 미치는 영향)

  • Cho, Nam Joon;Lee, Byeong Kwon;Lee, Woong Hee;Kim, Kee Kwang;Han, Hyo Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.6
    • /
    • pp.356-361
    • /
    • 2017
  • Houttuyniae Herba is widely used as a cosmetic for enhancing hair growth, and study on promoting mouse hair growth has also been reported. However, studies on the effects of the Houttuyniae Herba on dermal papilla (DP) cells, which play an important role in hair growth, are not well known. For this reason, we studied the effect of Houttuyniae Herba on DP cells. The strong antioxidant activity of Houttuyniae Herba was confirmed by ABTS assay. In the MTS assay, cell viability was reduced to 94.5% in DP cells by treatment of 2 mg/ml concentration of Houttuyniae Herb and cytotoxicity was not observed at 1 mg/ml concentration. The mRNA expression levels of Bone morphogenetic pretein (BMP6), fibroblast growth factor 7 (FGF7), FGF10, and ${\beta}$-galactosidase genes, which are involved in hair growth cycle and hair loss induction, were measured by quantitative RT-PCR after Houttuyniae Herbtreatment. Houttuyniae Herb did not significantly affect mRNA expression of BMP6, FGF7, FGF10, and ${\beta}$-catenin, which are important factors for regulating the hair cycle, including type 1 $5{\alpha}$-reductase. However, mRNA expression of type 2 $5{\alpha}$-reductase, the major cause of male hair loss, was significantly reduced to 56.1% by treatment of Houttuyniae Herbtreatment. Taken together, these results suggest that the Houttuyniae Herbtreatment can help to treat lair loss through removing free radicals and suppression of the expression level of type 2 $5{\alpha}$-reductase in DP cells.

Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells

  • Kim, You-Sun;Kokturk, Nurdan;Kim, Ji-Young;Lee, Sei Won;Lim, Jaeyun;Choi, Soo Jin;Oh, Wonil;Oh, Yeon-Mok
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.728-733
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

Inhibitory Effect of Amentoflavone of Selaginella Tamariscina on MMP-9 Expression through NF-${\kappa}$B and AP-1 in Macrophage Raw 264.7 cells

  • Ahn, Byung-Tae;Shin, Sung-Ahn;Kim, Jun-Gi;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.243-249
    • /
    • 2007
  • The French paradox has been attributed to the antioxidant properties of flavonoids present in the red wine. Amentoflavone(AF) is a bi-flavonoid compound with anti-fungal and anti-inflammatory activities. We isolated AF from Selaginella tamariscina, and studied its effects on nuclear factor-B(NF-B)-mediated MMP-9 gene expression in RAW264.7 cells. AF blocked the lipopolysaccharide(LPS)-induced expression of MMP-9. Zymographic and immunoblot analyses showed that AF suppressed LPS-induced MMP-9 expression in a dose-dependent manner. To clarify the mechanistic basis for its inhibition of MMP-9 induction, we examined the effect of AF on the transactivation of MMP-9 gene by luciferase reporter activity using -1.59 kb flanking region. AF potently suppressed the reporter gene activity. This inhibition was characterized by down-regulation of MMP-9, which was transcriptionally regulated at NF-B site and activation protein-1 (AP-1) site in the MMP-9 promoter, two important nuclear transcription factors that are involved in MMP-9 expression. These findings indicate the efficacy of AF in inhibiting MMP-9 expression through the transcription factors NF-B and AP-1 on LPS-induced RAW264.7 cells.

Microarray Analysis of Gene Expression Profiles in Response to Treatment with Melatonin in Lipopolysaccharide Activated RAW 264.7 Cells

  • Ban, Ju-Yeon;Kim, Bum-Sik;Kim, Soo-Cheol;Kim, Dong-Hwan;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • Melatonin, which is the main product of the pineal gland, has well documented antioxidant and immune-modulatory effects. Macrophages produce molecules that are known to play roles in inflammatory responses. We conducted microarray analysis to evaluate the global gene expression profiles in response to treatment with melatonin in lipopolysaccharide (LPS) activated RAW 264.7 macrophage cells. In addition, eight genes were subjected to real-time reverse transcription polymerase chain reaction (RT-PCR) to confirm the results of the microarray. The cells were treated with LPS or melatonin plus LPS for 24 hr. LPS induced the up-regulation of 1073 genes and the down-regulation of 1144 genes when compared to the control group. Melatonin pretreatment of LPS-stimulated RAW 264.7 cells resulted in the down regulation of 241 genes and up regulation of 164 genes. Interestingly, among genes related to macrophage-mediated immunity, LPS increased the expression of seven genes (Adora2b, Fcgr2b, Cish, Cxcl10, Clec4n, Il1a, and Il1b) and decreased the expression of one gene (Clec4a3). These changes in expression were attenuated by melatonin. Furthermore, the results of real-time PCR were similar to those of the microarray. Taken together, these results suggest that melatonin may have a suppressive effect on LPS-induced expression of genes involved in the regulation of immunity and defense in RAW 264.7 macrophage cells. Moreover, these results may explain beneficial effects of melatonin in the treatment of various inflammatory conditions.

Antioxidant Effects of Eriodictyol on Hydrogen Peroxide-Induced Oxidative Stress in HepG2 Cells (산화스트레스가 유도된 HepG2 세포에서 Eriodictyol의 항산화 효과)

  • Joo, Tae-Woo;Hong, Sung-Hyun;Park, Sun-Young;Kim, Gur-Yoo;Jhoo, Jin-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.510-517
    • /
    • 2016
  • This study was conducted to investigate the antioxidant and hepatoprotective effects of eriodictyol compound against hydrogen peroxide-induced oxidative stress in HepG2 cells by measuring expression levels of antioxidant enzymes, liver function index enzyme activities, and inhibitory effects against reactive oxygen species (ROS) production. HepG2 cell viability was assessed using 3-(4,5-dimethyl thiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the concentration range of $10{\sim}50{\mu}g/mL$, eriodictyol displayed over 98% cell viability in HepG2 cells. The effects of increased gene expression on hydrogen peroxide-induced oxidative stress were analyzed by monitoring antioxidant enzyme (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx) gene expression levels using real-time PCR. Eriodictyol compound significantly increased gene expression levels of SOD, CAT, and GPx in a dose-dependent manner ($10{\sim}50{\mu}g/mL$). Hepatoprotective effects against hydrogen peroxide-induced oxidative stress were analyzed by monitoring glutamic oxaloacetic transaminase (GOT), lactate dehydrogenase (LDH), and gamma-glutamyl transferase (GGT) activities in HepG2 cell culture medium using a biochemistry analyzer. Eriodictyol compound significantly reduced GOT, LDH, and GGT activities in a dose-dependent manner in HepG2 cells. ROS level in HepG2 cells was analyzed by 2',7'-dichlorofluorescein fluorescence diacetate assay, and eriodictyol compound effectively reduced the intracellular ROS level in HepG2 cells. The results reveal that eriodictyol compound can be useful for development of effective antioxidant and hepatoprotective agents.

Green perilla leaf extract ameliorates long-term oxidative stress induced by a high-fat diet in aging mice

  • Edward, Olivet Chiamaka;Thomas, Shalom Sara;Cha, Kyung-Ok;Jung, Hyun-Ah;Han, Anna;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.549-564
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by an imbalance between harmful free radicals and antioxidants. Long-term oxidative stress can lead to an "exhausted" status of antioxidant defense system triggering development of metabolic syndrome and chronic inflammation. Green perilla (Perilla frutescens) is commonly used in Asian cuisines and traditional medicine in southeast Asia. Green perilla possesses numerous beneficial effects including anti-inflammatory and antioxidant functions. To investigate the potentials of green perilla leaf extract (PE) on oxidative stress, we induced oxidative stress by high-fat diet (HFD) in aging mice. MATERIALS/METHODS: C57BL/6J male mice were fed HFD continuously for 53 weeks. Then, mice were divided into three groups for 12 weeks: a normal diet fed reference group (NDcon), high-fat diet fed group (HDcon), and high-fat diet PE treated group (HDPE, 400 mg/kg of body weight). Biochemical analyses of serum and liver tissues were performed to assess metabolic and inflammatory damage and oxidative status. Hepatic gene expression of oxidative stress and inflammation related enzymes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: PE improved hepatopathology. PE also improved the lipid profiles and antioxidant enzymes, including hepatic glutathione peroxidase (GPx) and superoxide dismutase (SOD) and catalase (CAT) in serum and liver. Hepatic gene expressions of antioxidant and anti-inflammatory related enzymes, such as SOD-1, CAT, interleukin 4 (IL-4) and nuclear factor erythroid 2-related factor (Nrf2) were significantly enhanced by PE. PE also reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the serum and liver; moreover, PE suppressed hepatic gene expression involved in pro-inflammatory response; Cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). CONCLUSIONS: This research opens opportunities for further investigations of PE as a functional food and possible anti-aging agent due to its attenuative effects against oxidative stress, resulting from HFD and aging in the future.

In vitro Arsanilic Acid Induction of Apoptosis in Rat Hepatocytes

  • Yuan, Hui;Gong, Zhi;Yuan, li-Yun;Han, Bo;Han, Hong-Ryul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1328-1334
    • /
    • 2006
  • This paper aimed to study the toxicity of arsanilic acid on rat primary hepatocytes in vitro by a modification of the perfusion method. The conditions included concentrations of 0, 1.085, 10.85, 108.5, 1,085 and 10,850 mg/kg arsanilic acid in RPMI 1,640 medium at rat hepatocytes plates respectively, each group had five repeats at $37^{\circ}C$ for 48 h. The rat primary hepatocytes survival ratio, DNA Ladder, activities of glutathione peroxidase (GSH-px), superoxide dismutase (SOD) and catalase (CAT) in hepatocytes, activity of SOD in the medium and the expression of gene bax in hepatocytes were measured at 12 h, 24 h and 48 h respectively. The results showed that arsanilic acid decreased the activities of GSH-px and SOD, and increased the activity of CAT in all dosages, and affected as positive DNA ladder. Although the SOD activities of both hepatocytes and medium in 1.085 mg/L arsanilic acid were significantly lower than the base line at 12 h, CAT activity in 10.85 mg/L arsanilic acid was significantly higher than the base line at 48 h, and all of the DNA ladders were positive, which means 1.085 mg/L arsanilic acid induced apoptosis at 24 h. The gene expression of bax was significantly upregulated in 1.085 mg/L arsanilic acid or higher for 24 h.The parameters in 1,085 mg/L and 10,850 mg/L arsanilic acid had more severe changes than the others at any time indicating that these levels of arsanilic acid were toxic hazards for hepatocyte survival. It was concluded that arsanilic acid induced a dosage- and time-dependent gene expression of bax, 1.085 mg/L arsanilic acid could be involved in rat liver cell apoptosis at 24 h. Arsanilic acid as additives in livestock feed could present potential toxic implications for farm animals.

Antioxidant Effect of Filipendula glaberrima Nakai Extract in HepG2 Cells

  • Hong, Mijin;Hwang, Dahyun
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2022
  • The imbalance of oxidative stress due to the excessive production of reactive oxygen species (ROS) leads to the pathogenesis of liver disease. To prevent this, the role of antioxidant mechanisms is important. Antioxidant studies have been reported on the Filipendula glaberrima Nakai. However, studies applied to HepG2 cells, which are human liver cells, have not yet been conducted. In this study, 70% ethanol extract of Filipendula glaberrima Nakai (FGE) was prepared and antioxidant activity was investigated. It was confirmed whether FGE pretreatment could reduce hydrogen peroxide-induced oxidative stress in HepG2 cells. The increase in gene expression of antioxidant biomarkers and the scavenging ability of ROS were measured, and Hoechst 33342 staining was used to know the inhibitory effect of the apoptosis. As a result, FGE significantly increased SOD (2.6-fold), CAT (4.4-fold), MT-1A (3.1-fold), GPx (4-fold), and G6PD (2.4)-fold compared to the H2O2-treated group. FGE directly inhibited ROS production from 13.4 to 3.6 (the fluorescence mean of DCF-DA) and also reduced apoptotic cells from 45% to 10% (Hoechst 33342 staining) at 2.5 ㎍/mL. These results demonstrate the excellent antioxidant activity of FGE and show that it can be used as a functional food to prevent liver disease.

Effect of Dietary Supplementation of Acanthopanax senticosus and Eucommiaceae on the Expression of Lipogenic, Myogenic and Antioxidant Enzyme Genes in Broiler Chickens (육계에서 가시오갈피와 두충의 첨가 급여가 항산화 효소, 지방 및 근육 관련 유전자 발현에 미치는 영향)

  • Kang, H.K.;Beloor, J.;Sohn, S.H.;Jang, I.S.;Moon, Y.S.
    • Korean Journal of Poultry Science
    • /
    • v.36 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • This study was carried out to investigate the effect of dietary supplementation of Acanthopanax (A) senticosus and Eucommiaceae on the expression of lipogenic, myogenic and oxidative stress genes in broiler chickens. Birds were subjected (assigned) to one of the following 5 dietary treatments: control (CON), A. senticosus 0.5% (T1), 1.0% (T2), Eucommiaceae 0.5% (T3) and 1% (T4). Each treatment was replicated 8 times with 4 birds per replication, housed in 4 birds per cage. Birds were arranged according to randomized block design. Feeding trial was conducted from day 4 to 35th day of age. Liver and muscle tissues were collected for analysis. Broilers subjected to 1% A. senticosus had higher feed conversion ratio than the other treated birds whereas no significant differences were found in body weight, weight gain and feed intake. The gene expression levels of fatty acid synthase were not different among the treatments while the transcription factor $PPAR{\gamma}$ was highly expressed in Eucommiaceae but not in control and A. senticosus. The gene expression levels of myogenin were high in both A. senticosus and Eucommiaceae compared to control group. MyoD also showed high expression in treated groups furthermore, Eucommiaceae stimulated the expression of MyoD more than that of A. senticosus. The antioxidant gene expressions (SOD, CAT, SOD, GPX) generally were not much different among the treatments, however, SOD and GPX were stimulated in broilers consumed 1% Eucommiaceae diet. The result of this experiment showed that dietary supplementation of A. senticosus and Eucommiaceae in broiler may improve the antioxidant defence system through SOD and GPX without affect of growth performance in broilers.

The effect of storage temperature on antioxidant capacity and storability of paprika

  • Me-Hea Park;Hyang Lan Eum;Pue Hee Park;Dong Ryeol Baek;Siva Kumar Malka
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • Storage temperature profoundly influences the storability of paprika (Capsicum annuum L.). However, the impact of storage temperature on storability and its association with the antioxidant activity of paprika are poorly understood. In this study, we evaluated the storage attributes, activity, and gene expression levels of antioxidant enzymes in paprika stored at 4, 10, and 20℃ for 14 d and then at 20℃ for an additional 5 d (14+5 d; retail conditions). Storage at 10℃ effectively mitigated pitting, stalk browning, shriveling, and decay while significantly enhancing the marketability of paprika. The fruits stored at 4℃ were prone to pitting, whereas those stored at 20℃ were sensitive to stalk browning and decay. Moreover, paprika stored at 10℃ exhibited higher 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) activity and total phenolic content than those stored at 4 and 20℃, indicating improved antioxidant activity. Additionally, storage at 10℃ upregulated the expression levels of the antioxidant genes, catalase and peroxidase, suggesting the mechanism underlying the quality enhancement of paprika. Our findings suggest that paprika storage at 10℃ alleviates chilling injuries, preserves the quality and marketability, and enhances the antioxidant potential of paprika. These findings provide insights into how temperature influences the quality and minimizes post-harvest losses during the storage and distribution of paprika.