• 제목/요약/키워드: antioxidant enzyme activities

검색결과 759건 처리시간 0.031초

마늘의 섭취와 운동이 혈장지질과 항산화효소계에 미치는 영향 (Effect of Garlic Supplement and Exercise on Plasma Lipid and Antioxidant Enzyme System in Rats)

  • 윤군애
    • Journal of Nutrition and Health
    • /
    • 제39권1호
    • /
    • pp.3-10
    • /
    • 2006
  • Effects of garlic powder supplementation on blood lipid profile and antioxidant system were investigated in rats with and without swimming exercise. Sprague-Dawley rats of four experimental groups were fed for 4 weeks diets containing $15\%$ beef tallow and $1\%$ cholesterol; control without garlic and exercise, Go with $2\%$ garlic alone, Ex with exercise alone, GoEx with $2\%$ garlic and exercise. Rats were trained 40 min a days a days a week. Group Ex and GoEx showed significant lowering in body weight gain and fat accumulation. In Go, Ex and GoEx, plasm TG and LDL-C were lower and HDL-C was higher, although not significantly, compared to levels in control. Total cholesterol was significantly reduced in group Go, and Ex and GoEx were lower than control. The total/HDL cholesterol ratio was also found to be significantly different, decreasing the ratios in Go, Ex and GoEx. The hepatic TBARS increased significantly in group Ex $(51.7{\pm}3.43nM/g\;liver)$, while TBARS in Go and GoEx were low $(35.68{\pm}3.61,\;39.30{\pm}5.55nM/g\;liver)$ and similar to control's one. The activity of hepatic SOD in Go and GoEx tended higher than control and Ex without garlic. The hepatic catalase showed significantly the highest activity in Go. Activity of GSH-px was significantly low in Ex with $0.14{\pm}0.03$ unit/mg protein, and control, Go and GoEx had higher activities of $0.23{\pm}0.08,\;0.20{\pm}0.07,\;0.22{\pm}0.01\;unit/mg$ protein, respectively. Lower activities of antioxidant enzymes in Ex are likely to associated with the highest level of TBARS. It seems that a decrease in TBARS in GoEx relative to Ex was related to the increase in GSHpx and SOD with garlic supplemented, which led to compensate the oxidative stress from exercise. The results suggests that exercise or garlic supplement exerts blood lipid attenuating effect. In adition, garlic supplementation could strengthen the antioxidant potential against exercise-induced oxidants, partly by modulating oxidant enzyme activity. These effects of garlic may make it a beneficial agent on CVD.

Effect of Chromium Stress on Antioxidative Enzymes and Malondialdehyde Content Activities in Leaves and Roots of Mangrove Seedlings Kandelia Candel (L.) Druce

  • Rahman, Mohammed Mahabubur;Rahman, Motiur M.;Islam, Kazi Shakila;Chongling, Yan
    • Journal of Forest and Environmental Science
    • /
    • 제26권3호
    • /
    • pp.171-179
    • /
    • 2010
  • Effect of chromium (Cr) stress on antioxidant enzyme activities and malondialdehyde (MDA) content were investigated in leaves and roots of mangrove (italic (L.) Druce) seedlings. Cr toxicity effects were also assessed on young seedlings. The seedlings were grown in green house condition for three months in nutrient solution with 0, 0.5, 1, 1.5, 2, 2.5, and 3 mg $L^{-1}$ $CrCl_3$. This study showed that Cr led to the change of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and activities at different concentrations. The activity of antioxidant enzymes in leaves of K. candel seedlings indicates that enzymes engaged in antioxidant defense in certain level especially in low concentration of Cr treatments. The activities of SOD and POD were activated by Cr in the root level, while CAT activity was inhibited. CAT activity decreased in response to high concentrations of Cr. In the present study indicated that SOD in root was active in scavenging the superoxide produced by Cr. Both in roots and leaves, an increase in malondialdehyde (MDA) content was observed with increase in metal concentration and exposure periods. Our finding indicated that the high concentration of excessive Cr supply may interfere with several metabolic processes of seedlings, causing toxicity to plants as exhibited by chlorosis, necrosis, photosynthetic impairing and finally, plant death.

Enzymatic Hydrolysis of Ovotransferrin and the Functional Properties of Its Hydrolysates

  • Rathnapala, Ethige Chathura Nishshanka;Ahn, Dong Uk;Abeyrathne, Edirisingha Dewage Nalaka Sandun
    • 한국축산식품학회지
    • /
    • 제41권4호
    • /
    • pp.608-622
    • /
    • 2021
  • Bioactive peptides have great potentials as nutraceutical and pharmaceutical agents that can improve human health. The objectives of this research were to produce functional peptides from ovotransferrin, a major egg white protein, using single enzyme treatments, and to analyze the properties of the hydrolysates produced. Lyophilized ovotransferrin was dissolved in distilled water at 20 mg/mL, treated with protease, elastase, papain, trypsin, or α-chymotrypsin at 1% (w/v) level of substrate, and incubated for 0-24 h at the optimal temperature of each enzyme (protease 55℃, papain 37℃, elastase 25℃, trypsin 37℃, α-chymotrypsin 37℃). The hydrolysates were tested for antioxidant, metal-chelating, and antimicrobial activities. Protease, papain, trypsin, and α-chymotrypsin hydrolyzed ovotransferrin relatively well after 3 h of incubation, but it took 24 h with elastase to reach a similar degree of hydrolysis. The hydrolysates obtained after 3 h of incubation with protease, papain, trypsin, α-chymotrypsin, and after 24 h with elastase were selected as the best products to analyze their functional properties. None of the hydrolysates exhibited antioxidant properties in the oil emulsion nor antimicrobial property at 20 mg/mL concentration. However, ovotransferrin with α-chymotrypsin and with elastase had higher Fe3+-chelating activities (1.06±0.88%, 1.25±0.24%) than the native ovotransferrin (0.46±0.60%). Overall, the results indicated that the single-enzyme treatments of ovotransferrin were not effective to produce peptides with antioxidant, antimicrobial, or Fe3+-chelating activity. Further research on the effects of enzyme combinations may be needed.

Fatty acid compositions, free radical scavenging activities, and antioxidative enzyme activities of high-preference and low-preference beef cuts of Hanwoo (Bos taurus coreanae) cows

  • Moon, Sang-Ho;Kim, Eun-Kyung;Jang, Se Young;Tang, Yujiao;Seong, Hye-Jin;Yun, Yeong Sik;Chung, Sanguk;Oh, Mirae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권12호
    • /
    • pp.1974-1979
    • /
    • 2018
  • Objective: This study compared fatty acid compositions and antioxidant activities of high-preference cuts (loin, tenderloin, and rib) and low-preference cuts (brisket, topside, and shank) of Hanwoo (Bos taurus coreanae) cows to obtain potentially useful information for promoting the consumption of various low-preference cuts. Methods: Individual 500 g samples of fresh beef were collected from each of the six cuts from 10 Hanwoo cows (quality grade 1) and immediately freeze-dried. The dried samples were evaluated for fatty acid composition, free radical scavenging activities (hydroxyl, alkyl, and 2, 2'-diphenyl-1-picrylhydrazyl [DPPH] radical), and antioxidative enzyme activities (glutathione peroxidase [GPx], glutathione-S-transferase [GST], and superoxide dismutase [SOD]). Results: The percentages of total polyunsaturated fatty acids were significantly higher in low-preference cuts than in high-preference cuts (p<0.05). Hydroxyl, alkyl, and DPPH radical scavenging activities were significantly higher in low-preference cuts than in high-preference cuts (p<0.05). In addition, the activities of antioxidant enzymes, such as GPx, GST, and SOD, were significantly higher in low-preference cuts compared with high-preference cuts (p<0.05). Conclusion: These results may influence consumers to include more low-preference cuts in their selections based on the nutritional facts, which could help to balance the beef market in South Korea.

알록산 유도 당뇨흰쥐의 폐에서 황산화계의 변화 (The Changes of Antioxidant Enzymes in the Lung of Alloxan-induced Diabetic Rats)

  • 최형호;고광삼;임동윤
    • 약학회지
    • /
    • 제39권6호
    • /
    • pp.654-660
    • /
    • 1995
  • The present study was attempted to investigate the mechanism of oxidative cellular injuries which occur in diabetic rats by determining changes of antioxidant enzymes activity in the lung of alloxan-induced diabetic rats, the contents of glutathione in the lung, liver, blood samples, and ${\gamma}$-glutamylcysteine synthetase activities in the liver. Superoxide dismutase activities (SOD), including Cu, Zn-SOD and Mn-SOD, decreased in the lung of diabetic rats compared with those of normal control rats. However, activities of catalase and glutathione peroxidase(GPX) activities were not affected in the lung of diabetic rats. In diabetic rats, glutathione contents in the lung, liver, and blood samples, as well as the activities of ${\gamma}$-glutamylcysteine synthetase in the livers which is known to be the key enzyme of glutatione biosynthesis, decreased significantly. From these experimental results, it is thought that the decrease in SOD activities in the lung, glutathione contents and ${\gamma}$-glutamylcysteine synthetase activities in some tissues in alloxan-induced diabetic rats may be the crucial cause of vullnerability to oxidative cellular injuries.

  • PDF

Effect of Structured Lipids Containing CLA on Hepatic Antioxidant Enzyme Activity in Rats Fed a Normal Diet

  • Kim, Hye-Jin;Lee, Ki-Taek;Lee, Mi-Kyung;Jeon, Seon-Min;Park, Myung-Sook
    • Nutritional Sciences
    • /
    • 제7권3호
    • /
    • pp.138-143
    • /
    • 2004
  • Conjugated linoleic acid (CLA) has been shown to have a range of biological activities, including anti-carcinogenic, anti-atherosclerotic, anti-adipogenic and anti-diabetogenic effects. Recent reports also showed that CLA has free radical scavenging capacity, which may have health benefits for human beings. The current study was performed to investigate the effect of structured lipid (SL)-containing CLA on plasma lipids and hepatic antioxidant enzyme activity. Sprague-Dawley mts were fed 5% and 10% SL-containing normal diet for 6 wks and these groups were compared to rats fed 5% and 10% corn oil. In plasma lipids, total-cholesterol was not affected by fat source or dietary fat level while triglyceride level decreased significantly in groups fed 10% fat diet compared to the other groups. Plasma thiobarbituric acid reactive substances (TBARS) level decreased significantly in the S5 and S10 groups compared to the C5 and C10 groups, although hepatic TBARS level was not altered by fat source. On the other hand, in terms of hepatic antioxidant enzyme activity, superoxide dismutase activity increased in the S10 group, whereas catalase activity decreased in the S10 group. Glutathione peroxidase activity decreased significantly in the SL groups compared to the C5 group. Glutathione reductase activity increased and glucose-6-phosphate dehydrogenase activity decreased in the C10 group compared to the C5 and C5 groups. In conclusion, the free radical scavenging activity of CLA seemed to suppress oxidative stress, which reduced lipid peroxidation resulting in lower hepatic antioxidant enzyme activity.

Antioxidant and Anticholinesterase Potential of Two Nigerian Bitter Yams Using a Simulated Gastrointestinal Digestion Model and Conventional Extraction

  • Salawu, Sule Ola;Ajiboye, Praise Blessing;Akindahunsi, Akintunde Afolabi;Boligon, Aline Augusti
    • Preventive Nutrition and Food Science
    • /
    • 제22권2호
    • /
    • pp.107-117
    • /
    • 2017
  • The purpose of this study was to evaluate the antioxidant and anticholinesterase activities of yellow and white bitter yams from South Western Nigeria using methanolic extraction and simulated gastrointestinal digestion models. The phenolic compounds in the bitter yam varieties were evaluated by high performance liquid chromatography with a diode array detector (HPLC-DAD). The total phenolic content of the bitter yams was measured by the Folin-Ciocalteu method, reductive potential by assessing the ability of the bitter yam to reduce $FeCl_3$ solution, and the antioxidant activities were determined by the 2,2-diphenyl-1-picrylhydrazyl radical ($DPPH^{\cdot}$) scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation ($ABTS^{{\cdot}+}$) scavenging activity, nitric oxide radical ($NO^{\cdot}$) scavenging ability, hydroxyl radical scavenging ability, and ability to inhibit $Fe^{2+}$-induced lipid oxidation. The HPLC-DAD analysis revealed the presence of some phenolic compounds in the studied bitter yam varieties, with varying degree of quantitative changes after cooking. The antioxidant indices (total phenolic content, total flavonoid content, reducing power, $DPPH^{\cdot}$ scavenging activity, $ABTS^{{\cdot}+}$ scavenging activity, and $NO^{\cdot}$ scavenging activity) were higher in the simulated gastrointestinal digestion model compared to the methanolic extract, with the in vitro digested cooked white bitter yam ranking higher. Similarly, the in vitro digested yams had a higher inhibitory action against lipid oxidation compared to the methanolic extracts, with the cooked white bitter yam ranking high. The methanolic extracts and in vitro enzyme digests showed no acetylcholinesterase inhibitory abilities, while methanolic extracts and the in vitro enzyme digest displayed some level of butyrylcholinesterase inhibitory activities. Therefore the studied bitter yams could be considered as possible health supplements.

Proline, Sugars, and Antioxidant Enzymes Respond to Drought Stress in the Leaves of Strawberry Plants

  • Sun, Cunhua;Li, Xuehua;Hu, Yulong;Zhao, Pingyi;Xu, Tian;Sun, Jian;Gao, Xiali
    • 원예과학기술지
    • /
    • 제33권5호
    • /
    • pp.625-632
    • /
    • 2015
  • Drought is a severe abiotic stress that affects global crop production. A drought model was created for 'Toyonoka' Fragaria ${\times}$ ananassa, and the effects of drought stress on contents of proline, sugars, and antioxidant enzyme activities were investigated. Strawberry transplants with identical growth were chosen for the experiments and the randomized design included four replications (10 plants per block). The experimental sets differed in the moisture level of the culture medium relative to the range of moisture content as follows: control, 70-85%; mild drought stress, 50-60%; moderate drought stress, 40-50%; and severe drought stress, 30-40%. Drought stress was imposed by limiting irrigation. Plants were sampled and physiological parameters w ere measured on 0, 2, 4, 6, 8, and 10 days after the commencement of droughts tress. The water potential of strawberry leaves decreased in the plants under mild, moderate, and severe stress during the course of the water stress treatment and exhibited a significant difference from the control. Strawberry leaves subjected to drought stress had higher accumulation of proline, sugars, and malondialdehyde, and higher activities of superoxide dismutase, peroxidase, and catalase than leaves of control plants. Malondialdehyde levels increased in parallel with the severity and duration of drought stress. By contrast, antioxidant enzyme activity displayed dynamic responses to drought stress, first increasing and subsequently decreasing as the severity and duration of drought stress increased. These results suggest that strawberry plants respond to drought stress by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. These biochemical response changes may confer adaptation to drought stress and improve the capacity of plants to withstand water-deficit conditions.

Comparision of antioxidant and anti-inflammatory activities of enzyme assisted hydrolysate from Ecklonia maxima blades and stipe

  • Lee, Hyo-Geun;Je, Jun-Geon;Hwang, Jin;Jayawardena, Thilina U.;Nagahawatta, D.P.;Lu, Yu An;Kim, Hyun-Soo;Kang, Min-Cheol;Lee, Dae-Sung;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • 제24권5호
    • /
    • pp.197-206
    • /
    • 2021
  • Marine brown seaweeds are a source of functional ingredients with various biological properties. They have been used in the food and functional food industries. Brown seaweeds are divided into three parts of blades, stipe, and root. Normally seaweed blades were used as raw materials for biological research. However, there are limited uses on stipes of Ecklonia maxima (E. maxima) depending on the physicochemical, nutritional, and biological properties. Besides, the comparative studies of two structures of E. maxima, blades and stipe didn't discover previously. This study aimed to compare the potent antioxidant and anti-inflammatory activities of the two structures of E. maxima, blades and stipe in vitro studies to increase the utilization of the two structures of E. maxima. The enzyme-assisted hydrolysate from E. maxima showed significant antioxidant and anti-inflammatory activities. Among them, celluclast-assisted hydrolysate from E. maxima blades (EMBC) and viscozyme-assisted hydrolysate from E. maxima stipe (EMSV) expressed significant protection on hydrogen peroxide-induced oxidative stress. Moreover, EMBC and EMSV treatment remarkably reduced nitric oxide production by downregulation of pro-inflammatory cytokine expressions in lipopolysaccharide-stimulated Raw 264.7 cells. Especially EMBC showed strong inhibition on pro-inflammatory cytokine production compared to EMSV. Taken together research findings suggest that EMBC and EMSV possessed potent antioxidant and anti-inflammatory properties and may be utilized as functional ingredients in the food and functional food sectors.

식용 빅벨리 해마(Hippocampus abdominalis) 유래 단백질 가수분해물의 항산화와 항고혈압 효능 (Antioxidant and Antihypertension Effects of Enzyme Hydrolysate from Hippocampus abdominalis)

  • 제준건;김현수;이효근;오재영;;노섬;전유진
    • 한국수산과학회지
    • /
    • 제52권2호
    • /
    • pp.127-133
    • /
    • 2019
  • Seahorses have long been used as ornamental and medicinal products. The sea horse Hippocampus abdominalis has a beautiful color and unique shape and is also used for ornamental purposes and as a traditional medicine in China. This study examined the value of H. abdominalis as a health functional food or food additive. H. abdominalis was hydrolyzed using seven proteases: flavourzyme, neutrase, alcalase, trypsin, kojizyme, pepsin and protamex. The yields of all of the enzyme hydrolysates were higher than that of the aqueous extract. Of the enzymatic hydrolysates, seahorse Protamex hydrolysate (SHP) gave the highest yield and had excellent antioxidant and angiotensin-I converting enzyme inhibitory activities. It protected Vero cells against oxidative by 2,2-azobis-(2-amidinopropane) dihydrochloride (AAPH) and antihypertension in Spontaneously Hypertensive Rats. This study attempted to demonstrate H. abdominalis as a health functional food or food additive in the future.