DOI QR코드

DOI QR Code

Antioxidant and Anticholinesterase Potential of Two Nigerian Bitter Yams Using a Simulated Gastrointestinal Digestion Model and Conventional Extraction

  • Received : 2017.03.03
  • Accepted : 2017.05.31
  • Published : 2017.06.30

Abstract

The purpose of this study was to evaluate the antioxidant and anticholinesterase activities of yellow and white bitter yams from South Western Nigeria using methanolic extraction and simulated gastrointestinal digestion models. The phenolic compounds in the bitter yam varieties were evaluated by high performance liquid chromatography with a diode array detector (HPLC-DAD). The total phenolic content of the bitter yams was measured by the Folin-Ciocalteu method, reductive potential by assessing the ability of the bitter yam to reduce $FeCl_3$ solution, and the antioxidant activities were determined by the 2,2-diphenyl-1-picrylhydrazyl radical ($DPPH^{\cdot}$) scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation ($ABTS^{{\cdot}+}$) scavenging activity, nitric oxide radical ($NO^{\cdot}$) scavenging ability, hydroxyl radical scavenging ability, and ability to inhibit $Fe^{2+}$-induced lipid oxidation. The HPLC-DAD analysis revealed the presence of some phenolic compounds in the studied bitter yam varieties, with varying degree of quantitative changes after cooking. The antioxidant indices (total phenolic content, total flavonoid content, reducing power, $DPPH^{\cdot}$ scavenging activity, $ABTS^{{\cdot}+}$ scavenging activity, and $NO^{\cdot}$ scavenging activity) were higher in the simulated gastrointestinal digestion model compared to the methanolic extract, with the in vitro digested cooked white bitter yam ranking higher. Similarly, the in vitro digested yams had a higher inhibitory action against lipid oxidation compared to the methanolic extracts, with the cooked white bitter yam ranking high. The methanolic extracts and in vitro enzyme digests showed no acetylcholinesterase inhibitory abilities, while methanolic extracts and the in vitro enzyme digest displayed some level of butyrylcholinesterase inhibitory activities. Therefore the studied bitter yams could be considered as possible health supplements.

Keywords

References

  1. Lobo V, Patil A, Phatak A, Chandra N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4: 118-126. https://doi.org/10.4103/0973-7847.70902
  2. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB. 2015. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20: 21138-21156. https://doi.org/10.3390/molecules201219753
  3. Pandey KB, Rizvi SI. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2: 270-278. https://doi.org/10.4161/oxim.2.5.9498
  4. Saha S, Verma RJ. 2016. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius fruits. J Taibah Univ Sci 10: 805-812. https://doi.org/10.1016/j.jtusci.2014.09.003
  5. Chiu CS, Deng JS, Chang HY, Chen YC, Lee MM, Hou WC, Lee CY, Huang SS, Huang GJ. 2013. Antioxidant and anti-inflammatory properties of taiwanese yam (Dioscorea japonica Thunb. var. pseudojaponica (Hayata) Yamam.) and its reference compounds. Food Chem 141: 1087-1096. https://doi.org/10.1016/j.foodchem.2013.04.031
  6. Alozie Y, Akpanabiatu MI, Eyong EU, Umoh IB, Alozie G. 2009. Amino acid composition of Dioscorea dumetorum varieties. Pak J Nutr 8: 103-105. https://doi.org/10.3923/pjn.2009.103.105
  7. Alozie YE, Lawal OO, Umoh IB, Akpanabiatu MI. 2010. Fatty acid composition of Dioscorea dumetorum (Pax) varieties. Afr J Food Agric Nutr Dev 10: 2956-2966.
  8. Fasaanu OP, Oziegbe M, Oyedapo OO. 2013. Investigations of activities of alkaloid of trifoliate yam (Dioscorea dumetorum, (kunth) Pax). Ife J Sci 15: 251-262.
  9. Izekor OB, Olumese MI. 2010. Determinants of yam production and profitability in Edo State, Nigeria. Afr J Gen Agric 6: 205-210.
  10. Adedayo BC, Oboh G, Akindahunsi AA. 2013. Effect of cooking on the antioxidant properties of two varieties of bitter yam (Dioscorea dumetorum). J Sustainable Technol 4: 104-113.
  11. Akinoso R, Olatoye KK, Ogunyele OO. 2016. Potentials of trifoliate yam (Dioscorea dumetorum) in noodles production. J Food Process Technol 7: 609.
  12. Salawu SO, Innocenti M, Giaccherini C, Akindahunsi AA, Mulinacci N. 2008. Phenolic profiles of four processed tropical green leafy vegetables commonly used as food. Nat Prod Commun 3: 2043-2048.
  13. Salawu SO, Sanni DM, Akindahunsi AA. 2013. HPLC/DAD/MS phenolic profile, antioxidant activities and inhibitory action of Struchium sparganophora (Linn) Andtelfairia occidentalis (Hook. F) against low density lipoprotein oxidation. Afr J Food Sci Technol 4: 1-8.
  14. Omoba OS, Obafaye RO, Salawu SO, Boligon AA, Athayde ML. 2015. HPLC-DAD phenolic characterization and antioxidant activities of ripe and unripe sweet orange peels. Antioxidants 4: 498-512. https://doi.org/10.3390/antiox4030498
  15. Stintzing FC, Stintzing AS, Carle R, Frei B, Wrolstad RE. 2002. Color and antioxidant properties of cyanidin-based anthocyanin pigments. J Agric Food Chem 50: 6172-6181. https://doi.org/10.1021/jf0204811
  16. Aoun M, Makris DP. 2012. Binary mixtures of natural polyphenolic antioxidants with ascorbic acid: impact of interactions on the antiradical activity. Int Food Res J 19: 603-606.
  17. Saura-Calixto F, Goni I. 2006. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 94: 442-447. https://doi.org/10.1016/j.foodchem.2004.11.033
  18. Wong YH, Tan CP, Long K, Nyam KL. 2014. In vitro simulated digestion on the biostability of Hibiscus cannabinus L. seed extract. Czech J Food Sci 32: 177-181. https://doi.org/10.17221/222/2013-CJFS
  19. Serrano J, Goñi I, Saura-Calixto F. 2007. Food antioxidant capacity determined by chemical methods may underestimate the physiological antioxidant capacity. Food Res Int 40: 15-21. https://doi.org/10.1016/j.foodres.2006.07.010
  20. Perez-Jimenez J, Arranz S, Tabernero M, Diaz-Rubio ME, Serrano J, Goni I, Saura-Calixto F. 2008. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: extraction, measurement and expression of results. Food Res Int 41: 274-285. https://doi.org/10.1016/j.foodres.2007.12.004
  21. Bartus RT, Dean RL 3rd, Beer B, Lippa AS. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408-414. https://doi.org/10.1126/science.7046051
  22. Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V. 2013. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr Neuropharmacol 11: 388-413. https://doi.org/10.2174/1570159X11311040004
  23. Mathew M, Subramanian S. 2014. In vitro screening for anticholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS One 9: e86804. https://doi.org/10.1371/journal.pone.0086804
  24. Bhandari MR, Kawabata J. 2004. Organic acid, phenolic content and antioxidant activity of wild yam (Dioscorea spp.) tubers of Nepal. Food Chem 88: 163-168. https://doi.org/10.1016/j.foodchem.2003.12.027
  25. Delgado-Andrade C, Conde-Aguilera JA, Haro A, de la Cueva SP, Rufian-Henares JA. 2010. A combined procedure to evaluate the global antioxidant response of bread. J Cereal Sci 52: 239-246. https://doi.org/10.1016/j.jcs.2010.05.013
  26. Kamdem JP, Olalekan EO, Hassan W, Kade IJ, Yetunde O, Boligon AA, Athayde ML, Souza DO, Rocha JBT. 2013. Trichilia catigua (Catuaba) bark extract exerts neuroprotection against oxidative stress induced by different neurotoxic agents in rat hippocampal slices. Ind Crops Prod 50: 625-632. https://doi.org/10.1016/j.indcrop.2013.07.033
  27. Boligon AA, Kubiça TF, Mario DN, de Brum TF, Piana M, Weiblen R, Lovato L, Alves SH, Santos RCV, dos Santos Alves CF, Athayde ML. 2013. Antimicrobial and antiviral activity- guided fractionation from Scutia buxifolia Reissek extracts. Acta Physiol Plant 35: 2229-2239. https://doi.org/10.1007/s11738-013-1259-0
  28. Waterman PG, Mole S. 1994. Analysis of phenolic plant metabolites: ecological methods and concepts. Blackwell Scientific Publications, Oxford, UK. p 238.
  29. Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem 91: 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
  30. Oyaizu M. 1986. Studies on products of browning reactionantioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  31. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51: 6657-6662. https://doi.org/10.1021/jf034790i
  32. Brand-Williams W, Cuvelier ME, Berset CC. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  33. Sangameswaran B, Balakrishnan BR, Deshraj C, Jayakar B. 2009. In vitro antioxidant activity of roots of Thespesia lampas Dalz and Gibs. Pak J Pharm Sci 22: 368-372.
  34. Halliwell B, Gutteridge JMC. 1981. Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts. FEBS Lett 128: 347-352. https://doi.org/10.1016/0014-5793(81)80114-7
  35. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  36. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-90. https://doi.org/10.1016/0006-2952(61)90145-9
  37. Asif M, Acharya M. 2013. Phytochemicals and nutritional health benefits of soy plant. Int J Nutr Pharmacol Neurol Dis 3: 64-69. https://doi.org/10.4103/2231-0738.106998
  38. Egbuonu ACC, Nzewi DC, Egbuonu ONC. 2014. Functional properties of bitter yam (Dioscorea dumetorum) as influenced by soaking prior to oven-drying. Am J Food Technol 9: 97-103. https://doi.org/10.3923/ajft.2014.97.103
  39. Vaher M, Ehala S, Kaljurand M. 2005. On-column capillary electrophoretic monitoring of rapid reaction kinetics for determination of the antioxidative potential of various bioactive phenols. Electrophoresis 26: 990-1000. https://doi.org/10.1002/elps.200410086
  40. Ola SS, Catia G, Marzia I, Francesco VF, Afolabi AA, Nadia M. 2009. HPLC/DAD/MS characterisation and analysis of flavonoids and cynnamoil derivatives in four Nigerian greenleafy vegetables. Food Chem 115: 1568-1574. https://doi.org/10.1016/j.foodchem.2009.02.013
  41. Salawu SO, Bester MJ, Duodu KG. 2014. Phenolic composition and bioactive properties of cell wall preparations and whole grains of selected cereals and legumes. J Food Biochem 38: 62-72. https://doi.org/10.1111/jfbc.12026
  42. Meenakshi S, Umayaparvathi S, Arumugam M, Balasubramanian T. 2012. In vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pac J Trop Biomed 2: 66-70.
  43. Horax R, Hettiarachchy N, Islam S. 2005. Total phenolic contents and phenolic acid constituents in 4 varieties of bitter melons (Momordica charantia) and antioxidant activities of their extracts. J Food Sci 70: C275-C280.
  44. Ibrahim TA, El-Hefnawy HM, El-Hela AA. 2010. Antioxidant potential and phenolic acid content of certain cucurbitaceous plants cultivated in Egypt. Nat Prod Res 24: 1537-1545. https://doi.org/10.1080/14786419.2010.489049
  45. Han S, Xu B. 2014. Bioactive components of leafy vegetable edible amaranth (Amaranthus mangostanus L.) as affected by home cooking manners. Am J Food Sci Technol 2: 122-127. https://doi.org/10.12691/ajfst-2-4-3
  46. Song J, Liu C, Li D, Meng L. 2013. Effect of cooking methods on total phenolic and carotenoid amounts and DPPH radical scavenging activity of fresh and frozen sweet corn (Zea mays) kernels. Czech J Food Sci 31: 607-612. https://doi.org/10.17221/396/2012-CJFS
  47. Milenkovic D, Deval C, Dubray C, Mazur A, Morand C. 2011. Hesperidin displays relevant role in the nutrigenomic effect of orange juice on blood leukocytes in human volunteers: a randomized controlled cross-over study. PLoS One 6: e26669. https://doi.org/10.1371/journal.pone.0026669
  48. Crozier A, Jaganath IB, Clifford MN. 2009. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26: 1001-1043. https://doi.org/10.1039/b802662a
  49. Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B. 2014. Phenolics in human health. Int J Chem Eng Appl 5: 393-396.
  50. Lorenzo JM, Munekata PES. 2016. Phenolic compounds of green tea: health benefits and technological application in food. Asian Pac J Trop Biomed 6: 709-719.
  51. Turkoglu A, Duru ME, Mercan N,Kivrak I, Gezer K. 2007. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem 101: 267-273. https://doi.org/10.1016/j.foodchem.2006.01.025
  52. Jose GS, Radhamany PM. 2012. Identification and determination of antioxidant constituents of bioluminescent mushroom. Asian Pac J Trop Biomed 2: S386-S391. https://doi.org/10.1016/S2221-1691(12)60194-4
  53. Tagliazucchi D, Verzelloni E, Bertolini D, Conte A. 2010. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem 120: 599-606. https://doi.org/10.1016/j.foodchem.2009.10.030
  54. Bhatt A, Patel V. 2015. Antioxidant potential of banana: study using simulated gastrointestinal model and conventional extraction. Indian J Exp Biol 53: 457-461.
  55. Mbaebie BO, Edeoga HO, Afolayan AJ. 2012. Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq. Asian Pac J Trop Biomed 2: 118-124. https://doi.org/10.1016/S2221-1691(11)60204-9
  56. Liu Y, Pukala TL, Musgrave IF, Williams DM, Dehle FC, Carver JA. 2013. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorg Med Chem Lett 23: 6336-6340. https://doi.org/10.1016/j.bmcl.2013.09.071
  57. Nimse SB, Pal D. 2015. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5: 27986-28006. https://doi.org/10.1039/C4RA13315C
  58. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. 2007. Trends in oxidative aging theories. Free Radic Biol Med 43: 477-503. https://doi.org/10.1016/j.freeradbiomed.2007.03.034
  59. Maisuthisakul P, Suttajit M, Pongsawatmanit R. 2007. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem 100: 1409-1418. https://doi.org/10.1016/j.foodchem.2005.11.032
  60. Hogan DB. 2014. Long-term efficacy and toxicity of cholinesterase inhibitors in the treatment of Alzheimer disease. Can J Psychiatry 59: 618-623. https://doi.org/10.1177/070674371405901202
  61. Oolovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzid AM, Vasic VM. 2013. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11: 315-335. https://doi.org/10.2174/1570159X11311030006
  62. Vladimir-Knezevie S, Blazekovic B, Kindl M, Vladic J, Lower-Nedza AD, Brantner AH. 2014. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 19: 767-782. https://doi.org/10.3390/molecules19010767
  63. Szwajgier D. 2013. Anticholinesterase activities of selected polyphenols-a short report. Pol J Food Nutr Sci 64: 59-64.
  64. de Souza LG, Renna MN, Figueroa-Villar JD. 2016. Coumarins as cholinesterase inhibitors: a review. Chem Biol Interact 254: 11-23. https://doi.org/10.1016/j.cbi.2016.05.001
  65. Yoo KY, Park SY. 2012. Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 17: 3524-3538. https://doi.org/10.3390/molecules17033524
  66. Katalinic M, Bosak A, Kovarik Z. 2014. Flavonoids as inhibitors of human butyrylcholinesterase variants. Food Technol Biotechnol 52: 64-67.

Cited by

  1. Physical, chemical, and biological evaluation of nanoparticles containing phenolic compounds from wine production residues vol.45, pp.7, 2017, https://doi.org/10.1111/jfpp.15629