• Title/Summary/Keyword: antioxidant compound

Search Result 820, Processing Time 0.03 seconds

Quercetin suppress CCL20 by reducing IκBα/STAT3 phosphorylation in TNF-α/IL-17A induced HaCaT cells (TNF-α/IL-17A 유도된 HaCaT 세포주에서 Quercetin의 IκBα/STAT3 인산화 조절에 의한 CCL20 발현 억제)

  • Kim, Mi Ran;Kim, Min Young;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.211-219
    • /
    • 2020
  • Quercetin is a polyphenol compound with excellent antioxidant and anti-inflammatory activity. However, little has been reported about the efficacy of quercetin to control psoriasis. Thus, we aimed to investigate the effect of quercetin to regulate psoriatic dermatitis with HaCaT cell lines activated by TNF-α and IL-17A, which are in vitro psoriasis skin models. When quercetin was treated with TNF-α-activated HaCaT cell line, inflammatory cytokine expressions such as IL-1α, IL-1β and IL-6 were reduced by 49.1±7.14, 42.8±8.16, and 34.5±2.52%, respectively. In addition, mRNA expression levels of IL-8 and CCL20 the chemokines that attract immune cells such as Th17 cells and dendritic cells to the inflammatory reaction site, were also reduced by 38.4±5.83 and 52.9±4.59% compared to the TNF-α treatment group. The expression of proteins KRT6A and KRT16, which was nonspecifically increased in psoriatic skin was also significantly suppressed. Moreover, phosphorylation of IκBα and STAT3 proteins activated by TNF-α was also significantly inhibited. After stimulating the HaCaT with IL-17A, known as another psoriasis-inducing cytokine, it was observed that IκBα mRNA expression decreased by 55.8±5.28%, and STAT3 phosphorylation was downregulated by 36.3±6.81%. Finally, after co-activation by TNF-α/IL-17A, quercetin inhibited all of IL-1α, IL-1β, IL-6, TNF-α and CCL20 gene expression. The above results strongly suggest that quercetin is a material that has not only anti-oxidant and anti-inflammatory activities, but also has an activity in improving psoriasis.

Physicochemical properties of Salvia miltiorrhiza Bunge following treatment with enzymes (효소 처리에 따른 단삼 추출물의 이화학적 특성)

  • Kim, Sun-Hwa;Hwang, In-Wook;Chung, Shin-Kyo;Seo, Young-Jin;Kim, Jong-Soo;Jeong, Yong-Jin;Kim, Mi-Yeon
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.699-707
    • /
    • 2015
  • To improve the utilization of the domestic plant Salvia miltiorrhiza Bunge (Danshen), this study investigated changes in the physicochemical qualities of Danshen extracts obtained from low-temperature extraction using the enzymes amylase, cellulase, pectinase, and protease. Changes in the yield, pH, sugar content, and chromaticity were investigated. The changes were found to be highest in the amylase-treated extract with the following values: yield, 58.3%; pH, 6.04; sugar content, $5.97^{\circ}Brix$. With regard to antioxidant properties, Danshen extracts treated with amylase showed the highest DPPH and ABTS scavenging activities of 84.25% and 74.11% at 55 ppm. The total phenolic compound content was highest in the group subjected to enzyme treatment at $60^{\circ}C$. The salvianolic acid B level of the Danshen extract was the highest in the amylase-treated group, with a value of 3,002.6 mg/100 g. Cryptotanshinone level was the highest in the amylase- and protease-treated group with a value of 3.8 mg/100 g. Tanshinone I was the highest in the protease-treated group, with a value of 14.2 mg/100 g. The results showed that the indicator components of Danshen were detected as stable in the extracts after using amylase for low-temperature extraction; therefore, it would be possible to use Danshen industrially as a functional ingredient through mass production. Furthermore, the enzyme-treatment extraction could be utilized for a variety of natural products.

Physiological Responses of Green Roof Plants to Drought Stress (건조스트레스에 따른 옥상녹화 식물의 생리적 반응)

  • Park, Seong-Sik;Choi, Jaehyuck;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.51-59
    • /
    • 2017
  • This study evaluated the drought tolerance of Liriope platyphylla F.T.Wang & T.Tang, Dendranthema zawadskii var. lucidum (Nakai) J.H.Park, Hosta longipes (Franch. & Sav.) Matsum., Sedum sarmentosum Bunge and Zoysia japonica Steud. for an extensive green roof. In order to assess drought tolerance of green roof plants, several criteria were measured such as volumetric water content, leaf and soil moisture potential, chlorophyll a and b, chlorophyll fluorescence, photosynthesis, stomatal conductance, transpiration rate and antioxidants. The results of the drought tolerance measurement of green roof plants focused on the gradually withering of plants from lack of volumetric water content. D. zawadskii was the first to show an initial wilting point, followed by Z. japonica, H. longipes and L. platyphylla in order while S. sarmentosum showed no withering. It was concluded that H. longipes, L. platyphylla and S. sarmentosum were highly drought tolerant plants able to survive over three weeks. Furthermore, chlorophyll a and b were divided into two types: Type I, which kept regular content from the beginning to the middle of the period and suddenly declined, like H. longipes and Z. japonica; and Type II, which showed low content at the beginning, sharply increased at the middle stage and decreased, like D. zawadskii, L. platyphylla and S. sarmentosum. Volumetric water content and the amount of evapotranspiration consistently declined in all plant species. The analysis of chlorophyll fluorescence results that S. sarmentosum, which had relatively high drought tolerance, was the last to decline, while Z. japonica and S. sarmentosum withered after rapid reduction. At first, photosynthesis, stomatal conductance and transpiration rate showed high activity, but they lowered as the plant body closed stomata owing to the decrease in volumetric water content. Measuring antioxidants showed that when drought stress increased, the amount of antioxidants grew as well. However, when high moisture stress was maintained, this compound was continuously consumed. Therefore, the variation of antioxidants was considered possible for use as one of the indicators of drought tolerance evaluation.

In vivo Study of the Renal Protective Effects of Capsosiphon fulvescens against Streptozotocin-induced Oxidative Stress (스트렙토조토신 유발 당뇨 쥐의 산화스트레스에 대한 매생이 추출물의 신장 보호 효과)

  • Nam, Mi-Hyun;Koo, Yun-Chang;Hong, Chung-Oui;Yang, Sung-Yong;Kim, Se-Wook;Jung, Hye-Lim;Lee, Hwa;Kim, Ji-Yeon;Han, Ah-Ram;Son, Won-Rak;Pyo, Min-Cheol;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.641-647
    • /
    • 2014
  • In this study, we evaluated the effect of Capsosiphon fulvescens extract (CFE) and its active compound, pheophorbide A (PhA), on diabetic kidney failure. Diabetes mellitus (DM) was induced by a single intraperitoneal injection of streptozotocin (STZ; 40 mg/kg body weight (BW)). After a week, the rats were orally administered CFE (4 and 20 mg/kg BW) or PhA (0.2 mg/kg BW) once a day for 9 weeks. After scarification, renal tissue samples were collected for biochemical and histochemical analyses. Our study showed that the treatment with CFE and PhA significantly decreased lipid peroxidation level and the activities of glutathione peroxidase and glutathione-S-transferase (p<0.05), but it increased glutathione level and the activities of glutathione reductase, superoxide dismutase, and catalase in the renal tissues (p<0.05). The CFE- and PhA-treated rats with DM showed improved histochemical appearance and decreased abnormal glycogen accumulation. Therefore, we suggest that PhA-containing CFE could exert renal protective effects against STZ-induced oxidative stress.

Ameliorating effect of the ethyl acetate fraction of Pteridium aquilinum on glucose-induced neuronal apoptosis (포도당으로 유도된 신경세포 손상에 대한 고사리 아세트산에틸 분획물의 개선 효과)

  • Park, Seon Kyeong;Guo, Tian Jiao;Kim, Jong Min;Kang, Jin Yong;Park, Sang Hyun;Kang, Jeong Eun;Kwon, Bong Seok;Lee, Chang Jun;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.430-437
    • /
    • 2017
  • The protective effect of Pteridium aquilinum on high glucose-induced cytotoxicity was examined in vitro to investigate the relationship between diabetic condition and neuronal dysfunction. The ethyl acetate fraction of P. aquilinum (EFPA), with total phenolic content of 265.08 mg gallic acid equivalent/g, showed higher 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)/2,2-diphenyl-1-picrylhydrazyl radical scavenging activities and lipid peroxidation inhibitory effect than any other fraction. In addition, EFPA showed a significant reduction in the inhibitory effect on ${\alpha}$-glucosidase activity ($IC_{50}$ value=$205.26{\mu}g/mL$) compared to the acarbose positive control. The anti-oxidative effect in PC12 cells, protective effects on high glucose-induced oxidative stress in neuronal cells, and neurotoxicity were measured using 2',7'-dichlorofluorescin diacetate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide, and lactate dehydrogenase assays, respectively. EFPA showed conspicuous inhibitory effect on cellular reactive oxygen species production and neuronal cell apoptosis. Finally, kaempferol-3-glucoside was identified as the main phenolic compound of EFPA using high performance liquid chromatography.

Biological Activity of Extracts from Acanthopanax sessiliflorum Fruit (오가피(Acanthopanax sessiliflorum) 열매 추출물의 생리활성)

  • Jo, Bun-Sung;Cho, Young-Je
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.586-593
    • /
    • 2012
  • This study was carried out to determine the biological activity of Acanthopanax sessiliflorum fruit extracts. The phenolic compound contents of the extracts were 21.4 and 15.8 mg/g in hot water and 60% ethanol extracts. The total anti-oxidant activities of the water and the 60% ethanol extracts at a 200 ${\mu}g/mL$ phenolic concent ration were at $92.4{\pm}0.8$ and $89.2{\pm}1.1%$ in terms of the DPPH radical scavenging activity, $98.3{\pm}1.1$ and $96.5{\pm}3.5%$ in terms of the ABTS radical decolorization, $2.0{\pm}0.6$ and $1.2{\pm}2.8$ PF in terms of the anti-oxidant protection factor, and $66.3{\pm}0.8$ and $61.4{\pm}2.3%$ in terms of the TBARs inhibitory activity. The activities that inhibited the angiotensin-converting enzyme and xanthin oxidase were at $85.1{\pm}3.2$ and 0% in the water extracts and $59.3{\pm}1.5$ and $9.5{\pm}0.8%$ in the 60% ethanol extracts at the 200 ${\mu}g/mL$ phenolic concentration. The tyrosinase and elastase inhibitory activities were at $56.6{\pm}1.8$ and $53.1{\pm}1.1%$ in the water extracts and $33.7{\pm}2.2$ and $22.4{\pm}3.1%$ in the 60% ethanol extracts. The astringent effect of the water and the 60% ethanol extracts were at $50.5{\pm}0.9$ and $11.5{\pm}4.1%$.

Inhibition effect of herbs on the rancidity of soybean oil (허브의 첨가에 의한 대두유의 산패억제 효과)

  • Ryu, Keun-Young;Kim, Ae-Gyeong;Kim, Tae-Sun;Lee, Hyang-Hee;Seo, Kye-Won;Cho, Bae-Sik
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.36-43
    • /
    • 2018
  • In this study, we investigated the inhibition effect of various herbs on the rancidity of soybean oil. The antioxidant activity of herb-infused oils was evaluated by examining their total phenolic contents and DPPH radical scavenging abilities. The total phenolic contents were found to increase with addition of herbs to the soybean oil. Rosemary-infused oil (RO) exhibited the highest total phenolic contents ($77.28{\mu}g\;GE/mL$), followed by the lemon-balm-infused oil (LO), green-tea-infused oil (GO), and soybean oil (SO) alone (36.82, 36.66, and $21.24{\mu}g\;GE/mL$, respectively). Similary, the DPPH radical scavenging activity of the herb infused oil also increased. Moreover, measurements on the total polar compound (TPC) contents, acid value, and p-anisidine value were carried out in order to confirm the changes in the rancidity of the oils during frying. The time for the TPC content to reach 25% was confirmed to be delayed from 62 h for SO to 68 h, 74 h, and 80 h for GO, RO, LO, respectively. Even though there were some differences between the p-anisidine and acid values, it was confirmed that the addition of herbs inhibited the rancidity of soybean oil. Therefore, the results in this study show that adding herbs to soybean oil could positively contribute to the inhibition of oxidation and rancidity.

Relationship between Reactive Oxygen Species and Adenosine Monophosphate-activated Protein Kinase Signaling in Apoptosis Induction of Human Breast Adenocarcinoma MDA-MB-231 Cells by Ethanol Extract of Citrus unshiu Peel (진피 추출물에 의한 인간유방암 MDA-MB-231 세포의 apoptosis 유도에서 ROS 및 AMPK의 역할)

  • Kim, Min Yeong;HwangBo, Hyun;Ji, Seon Yeong;Hong, Su-Hyun;Choi, Sung Hyun;Kim, Sung Ok;Park, Cheol;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.410-420
    • /
    • 2019
  • Citrus unshiu peel extracts possess a variety of beneficial effects, and studies on their anticancer activity have been reported. However, the exact mechanisms underlying this activity remain unclear. In the current study, the apoptotic effect of ethanol extract of C. unshiu peel (EECU) on human breast adenocarcinoma MDA-MB-231 cells and related mechanisms were investigated. The results showed that the survival rate of MDA-MB-231 cells treated with EECU was significantly inhibited in a concentration-dependent manner, which was associated with the induction of apoptosis. EECU-induced apoptosis was associated with the activation of caspase-8 and caspase-9, which initiate extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3, a representative effect caspase. EECU suppressed the expression of the inhibitor of apoptosis family of proteins, leading to an increased Bax/Bcl-2 ratio and proteolytic degradation of poly (ADP-ribose) polymerase. EECU also enhanced the loss of the mitochondrial membrane potential and cytochrome c release from the mitochondria to the cytosol, along with truncation of Bid. In addition, EECU activated AMP-activated protein kinase (AMPK), and compound C, an AMPK inhibitor, significantly weakened EECU-induced apoptosis and cell viability reduction. Furthermore, EECU promoted the generation of reactive oxygen species (ROS), which acted as upstream signals for AMPK activation as pretreatment of cells, with the antioxidant N-acetyl cysteine reversing both EECU-induced AMPK activation and apoptosis. Collectively, these findings suggest that EECU inhibits MDA-MB-231 adenocarcinoma cell proliferation by activating intrinsic and extrinsic apoptotic pathways, which was mediated through ROS/AMPK-dependent pathways.

Protective effect of Gabjubaekmok (Diospyros kaki) extract against amyloid beta (Aβ)-induced cognitive impairment in a mouse model (아밀로이드 베타(amyloid beta)로 유도된 인지장애 마우스 모델에서 갑주백목(Diospyros kaki) 추출물의 인지기능 및 뇌 신경세포 보호 효과)

  • Yoo, Seul Ki;Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Han, Hye Ju;Park, Hyo Won;Kim, Chul-Woo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.379-392
    • /
    • 2019
  • The current study investigated the effect of Gabjubaekmok (Diospyros kaki) ethanolic extract (GEE) on $H_2O_2$-induced human neuroblastoma MC-IXC cells and amyloid beta $(A{\beta})_{1-42}$-induced ICR (Institute of Cancer Research) mice. GEE showed significant antioxidant activity that was evaluated based on ABTS, DPPH scavenging activity, and inhibition of malondialdehyde (MDA) and acetylcholinesterase activity. Further, GEE inhibited ROS production and increased cell viability in $H_2O_2$-induced MC-IXC cells. Administration of GEE ameliorated the cognitive dysfunction on $A{\beta}$-induced ICR mice as evaluated using Y-maze, passive avoidance, and Morris water maze tests. Results of ex vivo test using brain tissues showed that, GEE protected the cholinergic system and mitochondrial functions by increasing the levels of antioxidants such as ROS, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) against $A{\beta}$-induced cognitive dysfunction. Moreover, GEE decreasd the expression levels of apoptosis-related proteins such as $TNF-{\alpha}$, p-JNK, p-tau, BAX and caspase 3. While, expression levels of p-Akt and $p-GSK3{\beta}$ increased than $A{\beta}$ group. Finally, gallic acid was identified as the main compound of GEE using high performance liquid chromatography.

Study on Skin pH Improvement Effect through Regulation of Na+/H+ Exchanger 1 (NHE1) Expression of Prunella vulgaris Extract and Its Active Compound, Caffeic Acid (꿀풀 추출물과 그 활성 화합물인 카페인산의 Na+/H+ exchanger 1 (NHE1) 발현 조절을 통한 피부 pH 개선 효과에 대한 연구)

  • No-June Park;Sim-Kyu Bong;Sang-A Park;Gi Hyun Park;Young Chul Ko;Hae Won Kim;Su-Nam Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • This study was conducted to discover substances that regulate skin surface acidification using human epidermal keratinocyte cell lines, and to investigate their effects on the moisturizing ability and skin barrier function of the stratum corneum. Prunella vulgaris (P. vulgaris) is an herb widely distributed in Northwest Africa and North America that has been studied for its anti-apoptotic, antioxidant, and anti-inflammatory effects. However, research on the regulation of NHE1 expression and the restoration of skin barrier function has not been conducted. Analysis of P. vulgaris revealed the presence of rosmarinic acid and caffeic acid as active ingredients, which were tested for toxicity in human epidermal keratinocyte cell lines (HaCaT), and showed no toxic effects were observed at high concentarion (100 ㎍/mL or 100 µM). It is known that sodium-hydrogen ion exchange pumps (NHE1) decrease in expression in aging skin to maintain the acidic pH of the stratum corneum, and it is hypothesized that this decrease plays an important role in the impaired restoration of skin barrier function in aging skin. P. vulgaris extract and caffeic acid increased the expression of NHE1 in keratinocytes, increased the expression of natural moisturizing factor (NMF) precursor filaggrin and ceramide synthesis enzyme serine palmitoyl transferase (SPT). In addition, P. vulgaris and caffeic acid decreased the extracellular pH of keratinocytes, indicating a direct effect on skin pH regulation. Taken together, these results suggest that P. vulgaris and caffeic acid can regulate skin pH through NHE1 modulation, and may help to restore skin barrier function by increasing NMF and ceramide synthesis. These results show the possibility that honeysuckle and caffeic acid can have a positive effect on skin health, and can be the basis for the development of new skin protection products using them.