• Title/Summary/Keyword: antioxidant and anti-inflammatory effect

Search Result 634, Processing Time 0.024 seconds

Effect of Achyranthes japonica extract on growth, digestibility, microbiota, gas emission, and meat quality in broilers fed different protein diets

  • Sharif Uddin Khan;Sung Bo Cho;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.3
    • /
    • pp.482-492
    • /
    • 2024
  • Achyranthes japonica extract (AJE) is a multifuctional products that express anti-inflammatory, antioxidant and anti-microbial properties. This study was aimed to evaluate the effects of AJE addition to standard and low crude protein (LCP) diet on growth performance, nutrient digestibility, excreta bacterial count, excreta noxious gas emissions, breast meat quality, and organ weight of broiler chicken. A total of 340 one-day-old Ross 308 broilers [initial body weight (BW) of 43.10 ± 1.46 g, 5 replicate cages per treatment, and 17 birds per cage] were randomly distributed into 1 of 4 dietary treatment groups for a 35 day trial. The diets were provided based on three age stage of the broiler. In the starter stage broiler were fed basal diet. Experimental diet were fed to broiler from day 8 to 35. In growing (days 8-21) and finishing (days 22-35) stage broiler were fed: Standard crude protein (SCP) diet and LCP diet with 0.025% and 0.05% of AJE supplementation respectively. Here, the SCP and LCP diets were 21.50% and 20.86% CP during days 8-21 and 20.00% and 19.40% CP during days 22-35, respectively. The SCP diets with 0.025% AJE supplementation resulted in higher (p < 0.5) BW gain (BWG) at finishing stage and a tendency to lower feed conversion ratio and BWG in the overall period compared to LCP diets with or without AJE supplemenation. Moreover, dry matter and nitrogen digestibility were increased with SCP diet along with 0.025% of AJE. No significant difference was found in meat quality parameters except for pH. Interestingly, the NH3 gas emission to the environment was found to be less with different levels of CP and AJE supplementation. Therefore, we concluded that the addition of 0.025% AJE to the SCP diet improved broiler growth performance and nutrient digestibility with low fecal NH3 emissions.

New evidence on mechanisms of action of spa therapy in rheumatic diseases

  • Tenti, Sara;Fioravanti, Antonella;Guidelli, Giacomo Maria;Pascarelli, Nicola Antonio;Cheleschi, Sara
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.3.1-3.8
    • /
    • 2014
  • Spa represents a treatment widely used in many rheumatic diseases (RD). The mechanisms by which immersion in mineral or thermal water ameliorates RD are not fully understood. The net benefit is probably the result of a combination of factors, among which the mechanical, thermal and chemical effects are most prominent. Buoyancy, immersion, resistance and temperature play important roles. According to the gate theory, pain relief may be due to the pressure and temperature of the water on skin; heat may reduce muscle spasm and increase the pain threshold. Mud-bath therapy increases plasma ${\beta}$-endorphin levels and secretion of corticotrophin, cortisol, growth hormone and prolactin. It has recently been demonstrated that thermal mud-bath therapy induces a reduction in circulating levels of prostaglandin E2, leukotriene B4, interleukin-$1{\beta}$ and tumour necrosis factor-${\alpha}$, important mediators of inflammation and pain. Furthermore, balneotherapy has been found to cause an increase in insulin-like growth factor-1, which stimulates cartilage metabolism, and transforming growth factor-${\beta}$. Beneficial anti-inflammatory and anti-degenerative effects of mineral water were confirmed in chondrocytes cultures, too. Various studies in vitro and in humans have highlighted the positive action of mud-packs and thermal baths, especially sulphurous ones, on the oxidant/antioxidant system. Overall, thermal stress has an immunosuppressive effect. Many other non-specific factors may also contribute to the beneficial effects observed after spa therapy in some RD, including effects on cardiovascular risk factors (e.g. adipokines) and changes in the environment, pleasant surroundings and the absence of work duties.

Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells

  • Jeon, Hui-Jeon;Choi, Hyeon-Son;Lee, OK-Hwan;Jeon, You-Jin;Lee, Boo-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl- 1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.

A Study of Ginger Herbal Pharmacopuncture for Practical Application (생강 약침의 임상적 활용을 위한 고찰)

  • Lee, Chae-Woo;Lee, Byung-Hoon;Youn, Hyoun-Min
    • Journal of Pharmacopuncture
    • /
    • v.12 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • Objective : The purpose of this study is to present the standard for practical application of ginger herbal pharmacopuncture Material and Methods : We refer to ancient literatures and the recent papers for ginger. Conclusions : The following results have been obtained 1. The effect of ginger(Zingiber officinale Roscoe) is to "release exterior", "balance nutrient & defensive qi", "resolve phlegm", "arrest coughing", "warm the lungs". So ginger herbal pharmacopuncture can be applied to treating fever, chilling sign, headchae, snuffle and gasping cough due to cold affection and treating the symptoms like sputum and asthma that be revealed by pulmonary disease. 2. The effect of ginger is to "warm spleen and stomach", "arrest vomiting" "promote normal flow of water". So ginger herbal pharmacopuncture can be applied to treating nausea, vomiting, abdominal distension and diarrhea due to phlegm & dampness and treating edema. 3. The effect of ginger is to eliminate blood stasis. So ginger herbal pharmacopuncture can be applied to treating contusion, blood stasis, sprain and gynecologic disease. 4. Ginger can treat myalgia and pain due to wind-damp and have anti-inflammatory effect in pharmacology. So ginger herbal pharmacopuncture can be applied to treating disease of joint, ligament and muscle. 5. Ginger can resolve phlegm and resuscitate. So ginger herbal pharmacopuncture can be applied to treating unconsciousness. But, treating incipient cardiovascular accident, it needs to call your special attention to the danger of blood pressure increase. 6. In pharmacology, ginger is effective for antitumor, antioxidant effects and activating immunocyte. So ginger herbal pharmacopuncture can be applied to treating broadly varieties of tumor and allergic disease.

Suppression of Inflammation, Osteoclastogenesis and Bone Loss by PZRAS Extract

  • Li, Liang;Park, Young-Ran;Shrestha, Saroj Kumar;Cho, Hyoung-Kwon;Soh, Yunjo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1543-1551
    • /
    • 2020
  • Panax ginseng has a wide range of activities including a neuroprotective effect, skin protective effects, enhanced DNA repairing, anti-diabetic activity, and protective effects against vascular inflammation. In the present study, we sought to discover the inhibitory effects of a mixture of natural products containing Panax ginseng, Ziziphus jujube, Rubi fructus, Artemisiae asiaticae and Scutellaria baicalensis (PZRAS) on osteoclastogenesis and bone remodeling, as neither the effects of a mixture containing Panax ginseng extract, nor its molecular mechanism on bone inflammation, have been clarified yet. PZRAS upregulated the levels of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH-R) and glutathione peroxidase (GSH-Px) and reduced malondialdehyde (MDA) in LPS-treated RAW264.7 cells. Moreover, treatment with PZRAS decreased the production of IL-1β and TNF-α. PZRAS also inhibited osteoclast differentiation through inhibiting osteoclastspecific genes like MMP-2, 9, cathepsin K, and TRAP in RANKL-treated RAW264.7 cells. Additionally, PZRAS has inhibitory functions on the RANKL-stimulated activation of ERK and JNK, which lead to a decrease in the expression of NFATc1 and c-Fos. In an in vivo study, bone resorption induced by LPS was recovered by treatment with PZRAS in bone volume per tissue volume (BV/TV) compared to control. Furthermore, the ratio of eroded bone surface of femurs was significantly increased in LPS-treated mice compared to vehicle group, but this ratio was significantly reversed in PZRAS-treated mice. These results suggest that PZRAS could prevent or treat disorders with abnormal bone loss.

Antiobesity effects of the water-soluble fraction of the ethanol extract of Smilax china L. leaf in 3T3-L1 adipocytes

  • Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Dae Jung;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.606-612
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Several medicinal properties of Smilax china L. have been studied including antioxidant, anti-inflammatory, and anti-cancer effects. However, the antiobesity activity and mechanism by which the water-soluble fraction of this plant mediates its effects are not clear. In the present study, we investigated the lipolytic actions of the water-soluble fraction of Smilax china L. leaf ethanol extract (wsSCLE) in 3T3-L1 adipocytes. MATERIALS/METHODS: The wsSCLE was identified by measuring the total polyphenol and flavonoid content. The wsSCLE was evaluated for its effects on cell viability, lipid accumulation, glycerol, and cyclic adenosine monophosphate (cAMP) contents. In addition, western blot analysis was used to evaluate the effects on protein kinase A (PKA), PKA substrates (PKAs), and hormone-sensitive lipase (HSL). For the lipid accumulation assay, 3T3-L1 adipocytes were treated with different doses of wsSCLE for 9 days starting 2 days post-confluence. In other cell experiments, mature 3T3-L1 adipocytes were treated for 24 h with wsSCLE. RESULTS: Results showed that treatment with wsSCLE at 0.05, 0.1, and 0.25 mg/mL had no effect on cell morphology and viability. Without evidence of toxicity, wsSCLE treatment decreased lipid accumulation compared with the untreated adipocyte controls as shown by the lower absorbance of Oil Red O stain. The wsSCLE significantly induced glycerol release and cAMP production in mature 3T3-L1 cells. Furthermore, protein levels of phosphorylated PKA, PKAs, and HSL significantly increased following wsSCLE treatment. CONCLUSION: These results demonstrate that the potential antiobesity activity of wsSCLE is at least in part due to the stimulation of cAMP-PKA-HSL signaling. In addition, the wsSCLE-stimulated lipolysis induced by the signaling is mediated via activation of the ${\beta}$-adrenergic receptor.

3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling

  • Kim, Young Eun;Choi, Hyung Chul;Lee, In-Chul;Yuk, Dong Yeon;Lee, Hyosung;Choi, Bu Young
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.572-580
    • /
    • 2016
  • 3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of ${\beta}$-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of $WNT/{\beta}$-catenin and STAT signaling.

Wheatgrass extract inhibits hypoxia-inducible factor-1-mediated epithelial-mesenchymal transition in A549 cells

  • Do, Nam Yong;Shin, Hyun-Jae;Lee, Ji-Eun
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Epithelial-mesenchymal transition (EMT) is involved in not only cancer development and metastasis but also non-cancerous conditions. Hypoxia is one of the proposed critical factors contributing to formation of chronic rhinosinusitis or nasal polyposis. Wheatgrass (Triticum aestivum) has antioxidant, anti-aging, and anti-inflammatory effects. In this study, we analyzed whether wheatgrass has an inhibitory effect on the EMT process in airway epithelial cells. MATERIALS/METHODS: A549 human lung adenocarcinoma cells were incubated in hypoxic conditions ($CO_2$ 5%/$O_2$ 1%) for 24 h in the presence of different concentrations of wheatgrass extract (50, 75, 100, and $150{\mu}g/mL$) and changes in expression of epithelial or mesenchymal markers were evaluated by immunoblotting and immunofluorescence. Accordingly, associated EMT-related transcriptional factors, Snail and Smad, were also evaluated. RESULTS: Hypoxia increased expression of N-cadherin and reduced expression of E-cadherin. Mechanistically, E-cadherin levels were recovered during hypoxia by silencing hypoxia inducible factor (HIF)-$1{\alpha}$ or administering wheatgrass extract. Wheatgrass inhibited the hypoxia-mediated EMT by reducing the expression of phosphorylated Smad3 (pSmad3) and Snail. It suppressed the hypoxia-mediated EMT processes of airway epithelial cells via HIF-$1{\alpha}$ and the pSmad3 signaling pathway. CONCLUSION: These results suggest that wheatgrass has potential as a therapeutic or supplementary agent for HIF-1-related diseases.

Carnosic acid protects against acetaminophen-induced hepatotoxicity by potentiating Nrf2-mediated antioxidant capacity in mice

  • Guo, Qi;Shen, Zhiyang;Yu, Hongxia;Lu, Gaofeng;Yu, Yong;Liu, Xia;Zheng, Pengyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • Acetaminophen (APAP) overdose is one of the most common causes of acute liver failure. The study aimed to investigate the protective effect of carnosic acid (CA) on APAP-induced acute hepatotoxicity and its underlying mechanism in mice. To induce hepatotoxicity, APAP solution (400 mg/kg) was administered into mice by intraperitoneal injection. Histological analysis revealed that CA treatment significantly ameliorated APAP-induced hepatic necrosis. The levels of both alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum were reduced by CA treatment. Moreover, CA treatment significantly inhibited APAP-induced hepatocytes necrosis and lactate dehydrogenase (LDH) releasing. Western blot analysis showed that CA abrogated APAP-induced cleaved caspase-3, Bax and phosphorylated JNK protein expression. Further results showed that CA treatment markedly inhibited APAP-induced pro-inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and MCP-1 mRNA expression and the levels of phosphorylated $I{\kappa}B{\alpha}$ and p65 protein in the liver. In addition, CA treatment reduced APAP- induced hepatic malondialdehyde (MDA) contents and reactive oxygen species (ROS) accumulation. Conversely, hepatic glutathione (GSH) level was increased by administration of CA in APAP-treated mice. Mechanistically, CA facilitated Nrf2 translocation into nuclear through blocking the interaction between Nrf2 and Keap1, which, in turn, upregulated anti-oxidant genes mRNA expression. Taken together, our results indicate that CA facilitates Nrf2 nuclear translocation, causing induction of Nrf2-dependent genes, which contributes to protection from acetaminophen hepatotoxicity.

Anti-proliferative Efficacy of Xanthorrhizol on Cancer Cells via Activation of hTAS2R38 among 25 Human Bitter Taste Receptors

  • Yiseul Kim;Hyun-Jin Na;Min Jung Kim
    • Journal of the Korean Society of Food Culture
    • /
    • v.39 no.3
    • /
    • pp.166-172
    • /
    • 2024
  • Human bitter taste-sensing type 2 receptors (hTAS2Rs) are expressed in various human tissues and may be associated with various cell signaling pathways, cell progression, and cell physiology in each tissue. hTAS2Rs can be a potential drug target because it is also expressed in some cancer cells. Xanthorrhizol (XNT) has various biological activities, such as anticancer, antimicrobial, anti-inflammatory, and antioxidant. XNT produces a bitter taste, but the specific hTAS2R activated is unknown, and the hTAS2R-mediated effect of XNT on cancer cells has not been studied. This study discovered the target receptor of XNT among 25 hTAS2Rs and confirmed the possibility of the hTAS2R-mediated inhibition of cancer cell proliferation. XNT activated only one receptor, hTAS2R38 (EC50=1.606±0.021 ㎍/mL), and its activity was inhibited by probenecid, a hTAS2R38 antagonist. When HepG2 and MCF-7 cells were treated with XNT or phenylthiocarbamide (PTC), a known hTAS2R38 agonist, both chemicals inhibited cancer cell proliferation. XNT targets the human bitter taste receptor TAS2R38 and inhibits the proliferation of HepG2 and MCF-7 cells mediated by TAS2R38. This suggests that TAS2R38 may be a new target for disease treatment and a potential new factor for drug development.