• 제목/요약/키워드: antioxidant agents

검색결과 385건 처리시간 0.026초

Biruloquinone, an Acetylcholinesterase Inhibitor Produced by Lichen-Forming Fungus Cladonia macilenta

  • Luo, Heng;Li, Changtian;Kim, Jin Cheol;Liu, Yanpeng;Jung, Jae Sung;Koh, Young Jin;Hur, Jae-Seoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.161-166
    • /
    • 2013
  • At present, acetylcholinesterase (AChE) inhibitors are the first group of drugs to treat mild to moderate Alzheimer's disease (AD). Although beneficial in improving cognitive and behavioral symptoms, the effectiveness of AChE inhibitors has been questioned since they do not delay or prevent neurodegeneration in AD patients. Therefore, in the present study, in order to develop new and effective anti-AD agents from lichen products, both the AChE inhibitory and the neuroprotective effects were evaluated. The AChE inhibitory assay was performed based on Ellman's reaction, and the neuroprotective effect was evaluated by using the MTT method on injured PC12 cells. One AChE inhibitor ($IC_{50}$ = 27.1 ${\mu}g/ml$) was isolated by means of bioactivity-guided isolation from the extract of lichen-forming fungus Cladonia macilenta, which showed the most potent AChE inhibitory activity in previous screening experiment. It was then identified as biruloquinone by MS, and $^1H$- and $^{13}C$-NMR analyses. The inhibitory kinetic assay suggested that biruloquinone is a mixed-II inhibitor on AChE. Meanwhile, biruloquinone improved the viability of the $H_2O_2$- and ${\beta}$-amyloid-injured PC12 cells at 1 to 25 ${\mu}g/ml$. The protective effects are proposed to be related to the potent antioxidant activities of biruloquinone. These results imply that biruloquinone has the potential to be developed as a multifunctional anti- AD agent.

Antiplatelet Effects of Garlic and Chitosan: a Comparative Study between Fermented and Non-Fermented Preparations

  • Irfan, Muhammad;Kim, Minki;Kwon, Hyuk-Woo;Rhee, Man Hee;Kim, Hyun-Kyoung
    • 대한의생명과학회지
    • /
    • 제24권3호
    • /
    • pp.280-284
    • /
    • 2018
  • The incidence of cardiovascular diseases (CVDs) is increasing rapidly in developed countries, with CVDs now representing the leading cause of morbidity and mortality. Natural products and ethnomedicines have been shown to reduce the risk of CVDs. Garlic is a medicinal plant used throughout the world for its anti-inflammatory, antioxidant, and antiplatelet activities. Chitosan is a natural polysaccharide obtained from chitin, and derivatives of chitosan have been shown to inhibit platelet aggregation and adhesion. We hypothesized that fermented preparations of these products may possess stronger antiplatelet effects than the non-fermented forms owing to the increased bioavailability of the bioactive compounds produced during fermentation. Therefore, we compared these compounds via in vitro and ex vivo platelet aggregation assays by using standard light transmission aggregometry and ex vivo granule secretions from rat platelets. We found that fermented preparations exerted more potent and significant inhibition of platelet aggregation both in vitro and ex vivo. Likewise, ATP release from dense granules of platelets was also significantly inhibited in fermented preparation-treated rat platelets compared to that in non-fermented preparation-treated ones. We concluded that fermented preparations exerted more potent effects on platelet function both in vitro and ex vivo, possibly as a result of the increased bioavailability of active compounds produced during fermentation. We therefore suggest that fermented products may be potent therapeutics against platelet-related CVDs and can be used as antiplatelet and antithrombotic agents.

Antioxidants and Inhibitor of Matrix Metalloproteinase-1 Expression from Leaves of Zostera marina L

  • Kim, Jin-Hui;Cho, Young-Ho;Park, Sung-Min;Lee, Kyung-Eun;Lee, Jeong-Jae;Lee, Bum-Chun;Pyo, Hyeong-Bae;Song, Kyung-Sik;Park, Hum-Dai;Yun, Yeo-Pyo
    • Archives of Pharmacal Research
    • /
    • 제27권2호
    • /
    • pp.177-183
    • /
    • 2004
  • In order to develop new anti-photoaging agents, we examined the antioxidative activity and the inhibition effect of matrix metalloproteinase-1 (MMP-1) on the extracts of a marine product, Zostera marina L., which is known for its potent activity. Three compounds (compounds 1, 2, and 3) were isolated from an ethyl acetate (EtOAc) soluble fraction of the product; they were identified as apigenin-7 -O-$\beta$-D-glucoside (1), chrysoeriol (2), and luteolin (3). These compounds were found to scavenge radicals and reactive oxygen species (ROS) and were measured to have $SC_{50}$/ values of 0.18 mM, 0.68 mM, and 0.01 mM against the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical and 0.04 mM, 0.03 mM, and 0.01 mM against the superoxide radical in the xanthine/xanthine oxidase system, respectively. Compound 3 suppressed the expression of MMP-1 by up to 44% at 4.0 $\mu$M and inhibited the production of interleukin 6 (IL-6), which is known as a cytokine that induces MMP-1 expression. From these results, compound 3 and the other compounds were determined to have antioxidative activity and to inhibit MMP-1 expression. Thus, the three compounds are expected to be useful for preventing the photoaging of skin.

The Preventive Effects of Standardized Extract of Zataria multiflora and Carvacrol on Acetaminophen-Induced Hepatotoxicity in Rat - Zataria multiflora and Carvacrol and Hepatotoxicity -

  • Mohebbati, Reza;Paseban, Maryam;Beheshti, Farimah;Soukhtanloo, Mohammad;Shafei, Mohammad Naser;Rakhshandeh, Hasan;Rad, Abolfazl Khajavi
    • 대한약침학회지
    • /
    • 제21권4호
    • /
    • pp.249-257
    • /
    • 2018
  • Objectives: The hepatotoxicity induced by Acetaminophen (AAP) mostly mediated by effect on oxidative stress parameters. The Zataria multiflora (Z.M) is an herbal medicine with well-known antioxidant effect. The aim of this study is investigation of preventive effects of Z.M and Carvacrol (CAR) on AAP-induced hepatotoxicity in rats. Methods: Rats were randomly divided into four groups including: 1) Control, 2) Acetaminophen (AAP), 3) and 4) CAR. The saline, Z.M (200 mg/kg) and CAR (20 mg/kg) were administrated orally for 6 days, after that AAP (600 mg/kg) was administrated in the $7^{th}$ day. Blood sampling was performed on the first and last days. Also, the liver tissue was removed for evaluation of Malondyaldehide (MDA), Thiol content, Superoxide dismutase (SOD) and Catalase (CAT). Total Protein (tPro), Glutamic Oxaloacetic Transaminase (GOT), Glutamic Pyruvic Transaminase (GPT) and Alkaline Phosphatase (ALP) in liver tissue were evaluated. The changes (${\Delta}$) of enzymes activities were presented. Results: The ${\Delta}GOT$, ${\Delta}GPT$ and ${\Delta}ALP$ in CAR group significantly decreased compared to AAP group (P < 0.01 to P < 0.001) and ${\Delta}GPT$ in Z.M group was significantly reduced in comparison with AAP group (P < 0.05). Also, MDA, Thiol, SOD and CAT levels in treated groups were attenuated compared to AAP group (P < 0.05 to P < 0.001). Conclusion: Z.M and CAR have a powerful hepatoprotective effect. CAR is more effective than Z.M. Based on the results. Z.M and CAR could be potent supplementary agents against hepatotoxicity of AAP in patients.

프로바이오틱스의 구강질병 개선에 관한 연구 고찰 (Studies on the Oral Disease Improvement Effects of Probiotics : A Review)

  • 정성균
    • 디지털융복합연구
    • /
    • 제17권6호
    • /
    • pp.315-326
    • /
    • 2019
  • 본 연구는 프로바이오틱스의 특성과 관련 연구에 대한 종설이다. 프로바이오틱스는 면역질환 개선 효과, 유당불내증 완화 효과, 변비 및 설사 개선 효과, 항암 및 항종양 효과, 심혈관계 질환 예방 효과, 항당뇨 효과, 항산화 효과, 항균효과, 유용 대사산물의 생산 등의 기능성을 입증하였다. 구강 프로바이오틱스는 젖산을 생성하여 충치의 원인이 되는 뮤탄스균과 잇몸 질환을 일으키는 진지발리스균을 비롯한 유해균이 서식하기 어려운 환경을 만들어 구강 생태계 조성과 구취 제거에 효과적이라는 연구가 입증되었다. 그 결과 질환 완화는 물론 건강한 구강 밸런스를 관리하는 예방법으로 주목받고 있다. 일부 제한점에도 불구하고 현재 유용한 임상연구가 진행되고 있으며, 본 연구는 치아우식증과 치주염, 칸디다의 집락화 등 구강상태를 개선하기 위한 프로바이오틱스의 근거가 될 수 있을 것이다.

Hexane fraction from the ethanolic extract of Sargassum serratifolium suppresses cell adhesion molecules via regulation of NF-κB and Nrf2 pathway in human umbilical vein endothelial cells

  • Gwon, Wi-Gyeong;Lee, Sang-Gil;Kim, Jae-Il;Kim, Young-Mog;Kim, Seon-Bong;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • 제22권3호
    • /
    • pp.7.1-7.10
    • /
    • 2019
  • Sargassum serratifolium ethanolic extract has been known for strong antioxidant and anti-inflammatory properties. We prepared hexane fraction from the ethanolic extract of S. serratifolium (HSS) to improve biological activities. In this study, we investigated the effects of HSS on the inhibition of tumor necrosis factor (TNF)-${\alpha}$-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). We found that HSS suppressed the production of cell adhesion molecules such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 in TNF-${\alpha}$-induced HUVECs. Moreover, TNF-${\alpha}$-induced production of monocyte chemoattractant protein 1 and keratinocyte chemoattractant was inhibited by HSS treatment. HSS suppressed TNF-${\alpha}$-induced nuclear factor kappa B ($NF-{\kappa}B$) activation via preventing proteolytic degradation of inhibitor ${\kappa}B-{\alpha}$. HSS induced the production of heme oxygenase 1 via translocation of Nrf2 into the nucleus in TNF-${\alpha}$-treated HUVECs. Overall, HSS alleviated vascular inflammation through the downregulation of $NF-{\kappa}B$ activation and the upregulation of Nrf2 activation in TNF-${\alpha}$-induced HUVECs. These results indicate that HSS may be used as therapeutic agents for vascular inflammatory disorders.

파마지에 흡착된 은행잎 추출물(Ginkgo Leaf Extract)을 퍼머넌트 웨이브에 적용한 모발 개선 효과 (Ginkgo Leaf Extract from Permage Effects of Hair Improvement on the Permutations)

  • 염승선;이영조
    • 융합정보논문지
    • /
    • 제11권2호
    • /
    • pp.238-242
    • /
    • 2021
  • 본 연구의 목적은 건강한 모발을 유지하기 위해 트리트먼트로 모발을 유지 관리하기 위해서이다. 잦은 퍼머넌트로 인한 모발 끝에 많은 손상을 가져오는데 손상된 모발 끝을 보호하기 위해 단계별로 퍼머넌트 웨이브 전·후 처리제를 사용한다. 본 연구에 사용된 은행잎 추출물은 항균, 항산화 및 항암에 효과적이고 혈액순환과 피부보습 효과가 있다. 이 추출물을 파마지 1장과 파마지 2장에 적셔 와인딩한 후 큐티클, 인장강도 및 웨이브 형성률을 알아보고자 한다. 평균비교분석을 하였으며, 파마지 2장에 은행잎 추출물을 적용하였을 때 퍼머넌트한 모발끝이 모발개선효과가 가장 높은 것으로 나타났다.

Anti-nociceptive and anti-inflammatory activities of the essential oil isolated from Cupressus arizonica Greene fruits

  • Fakhri, Sajad;Jafarian, Safoora;Majnooni, Mohammad Bagher;Farzaei, Mohammad Hosein;Mohammadi-Noori, Ehsan;Khan, Haroon
    • The Korean Journal of Pain
    • /
    • 제35권1호
    • /
    • pp.33-42
    • /
    • 2022
  • Background: Cupressus arizonica Greene is a coniferous tree with great importance in fragrance and pharmaceutical industries. Essential oils from C. arizonica (EC) have shown potential antioxidant, and anti-microbial activities. This study aimed at investigating the anti-nociceptive and anti-inflammatory effects/mechanisms of EC. Methods: The EC was evaluated for anti-nociceptive and anti-inflammatory activities on male Wistar rats using a formalin test and carrageenan-induced paw edema, respectively. Also, we pre-treated some of the animals with naloxone and flumazenil in the formalin test to find out the possible contributions of opioid and benzodiazepine receptors to EC anti-nociceptive effects. Finally, gas chromatography/mass spectrometry (GC/MS) analysis was used to identify the EC's constituents. Results: EC in intraperitoneal doses of 0.5 and 1 g/kg significantly decrease the nociceptive responses in both early and late phases of the formalin test. From a mechanistic point of view, flumazenil administration 20 minutes before the most effective dose of EC (1 g/kg) showed a meaningful reduction in the associated anti-nociceptive responses during the early and late phases of the formalin test. Naloxone also reduced the anti-nociceptive role of EC in the late phase. Furthermore, EC at the doses of 1, 0.5, and 0.25 g/kg significantly reduced paw edema from 0.5 hours after carrageenan injection to 4 hours. GC/MS analysis showed that isolated EC is a monoterpene-rich oil with the major presence of α-pinene (71.92%), myrcene (6.37%), δ-3-carene (4.68%), β-pinene (3.71%), and limonene (3.34%). Conclusions: EC showed potent anti-nociceptive and anti-inflammatory activities with the relative involvement of opioid and benzodiazepine receptors.

Intrathecal administration of naringenin improves motor dysfunction and neuropathic pain following compression spinal cord injury in rats: relevance to its antioxidant and anti-inflammatory activities

  • Fakhri, Sajad;Sabouri, Shahryar;Kiani, Amir;Farzaei, Mohammad Hosein;Rashidi, Khodabakhsh;Mohammadi-Farani, Ahmad;Mohammadi-Noori, Ehsan;Abbaszadeh, Fatemeh
    • The Korean Journal of Pain
    • /
    • 제35권3호
    • /
    • pp.291-302
    • /
    • 2022
  • Background: Spinal cord injury (SCI) is one of the most debilitating disorders throughout the world, causing persistent sensory-motor dysfunction, with no effective treatment. Oxidative stress and inflammatory responses play key roles in the secondary phase of SCI. Naringenin (NAR) is a natural flavonoid with known anti-inflammatory and antioxidative properties. This study aims at evaluating the effects of intrathecal NAR administration on sensory-motor disability after SCI. Methods: Animals underwent a severe compression injury using an aneurysm clip. About 30 minutes after surgery, NAR was injected intrathecally at the doses of 5, 10, and 15 mM in 20 µL volumes. For the assessment of neuropathic pain and locomotor function, acetone drop, hot plate, inclined plane, and Basso, Beattie, Bresnahan tests were carried out weekly till day 28 post-SCI. Effects of NAR on matrix metalloproteinase (MMP)-2 and MMP-9 activity was appraised by gelatin zymography. Also, histopathological analyses and serum levels of glutathione (GSH), catalase and nitrite were measured in different groups. Results: NAR reduced neuropathic pain, improved locomotor function, and also attenuated SCI-induced weight loss weekly till day 28 post-SCI. Zymography analysis showed that NAR suppressed MMP-9 activity, whereas it increased that of MMP-2, indicating its anti-neuroinflammatory effects. Also, intrathecal NAR modified oxidative stress related markers GSH, catalase, and nitrite levels. Besides, the neuroprotective effect of NAR was corroborated through increased survival of sensory and motor neurons after SCI. Conclusions: These results suggest intrathecal NAR as a promising candidate for medical therapeutics for SCI-induced sensory and motor dysfunction.

Schisandrol A and gomisin N from Schisandra chinensis extract improve hypogonadism via anti-oxidative stress in TM3 Leydig cells

  • Jia Bak;Seung Ju Lee;Tae Won Kim;Seonhwa Hwang;Min Ju Park;Rohith Arunachalam;Eunsoo Yoo;Min Hi Park;Yun-Sik Choi;Hye Kyung Kim
    • Nutrition Research and Practice
    • /
    • 제17권1호
    • /
    • pp.1-12
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Male hypogonadism is a condition where the body does not produce enough testosterone and significantly impacts health. Age, obesity, genetics, and oxidative stress are some physiological factors that may contribute to testosterone deficiency. Previous studies have shown many pharmacological benefits of Schisandra chinensis (S. chinensis) Baillon as an anti-inflammatory and antioxidant. However, the molecular mechanism of attenuating hypogonadism is yet to be well established. This research was undertaken to study the effects of S. chinensis extract (SCE) on testosterone deficiency. MATERIALS/METHODS: S. chinensis fruit was pulverized and extracted using 60% aqueous ethanol. HPLC analysis was performed to analyze and quantify the lignans of the SCE. RESULTS: The 2,2-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays confirmed that the SCE and its major lignans (schisandrol A and gomisin N) inhibit oxidative stress. Effects of SCE analysis on the testosterone level under oxidative stress conditions revealed that both schisandrol A and gomisin N were able to recover the lowered testosterone levels. Through mRNA expression of TM3 Leydig cell, we observed that the SCE lignans were able to induce the enzymes involved in testosterone biosynthesis-related genes such as 3β-HSD4 (P < 0.01 for SCE, and P < 0.001 for schisandrol A and gomisin N), 17β-HSD3 (P < 0.001 for SCE, schisandrol A and gomisin N), and 17, 20-desmolase (P < 0.01 for schisandrol A, and P < 0.001 for SCE and gomisin N). CONCLUSIONS: These results support that SCE and its active components could be potential therapeutic agents for regulating and increasing testosterone production.