• Title/Summary/Keyword: antioxidant activity

Search Result 7,657, Processing Time 0.04 seconds

Effects of Different Ripening Stage and Varieties on Quality Characteristics and Antioxidant Activity of Aronia (Aronia Melaocarpa) (품종 및 숙도 단계에 따른 아로니아의 이화학적 품질 및 항산화 활성 연구)

  • Park, Ji Hyun;Kim, Kyung Mi;Cho, Yong Sik;Kim, Ha Yun
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.374-380
    • /
    • 2018
  • Aronia has low preference because of astringent and bitter taste. Appropriate processing is essential for eating aronia. For the processing of aronia, the aim of this study is to provide basic information on the cultivar and ripening stages. Three varieties (Viking, Nero and McKenzie) were studied. We divided the stages of maturity into four levels based on color. The physicochemical properties were analyzed. In the case of hardness, the first stage of maturity was the highest, and there was no difference between varieties. As maturation progressed, brightness and yellowness gradually decreased, and redness was highest at the second stage. The sugar content was the lowest in the Viking and significantly increased with the maturity stage. The acidity was highest in the Viking. Nero showed the highest radical scavenging ability. Total polyphenols and flavonoids were the highest in Nero. The highest level was shown at the first stage by the ripening stage.

Mangiferin ameliorates cardiac fibrosis in D-galactose-induced aging rats by inhibiting TGF-β/p38/MK2 signaling pathway

  • Cheng, Jing;Ren, Chaoyang;Cheng, Renli;Li, Yunning;Liu, Ping;Wang, Wei;Liu, Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • Aging is the process spontaneously occurred in living organisms. Cardiac fibrosis is a pathophysiological process of cardiac aging. Mangiferin is a well-known C-glucoside xanthone in mango leaves with lots of beneficial properties. In this study, rat model of cardiac fibrosis was induced by injected with 150 mg/kg/d D-galactose for 8 weeks. The age-related cardiac decline was estimated by detecting the relative weight of heart, the serum levels of cardiac injury indicators and the expression of hypertrophic biomakers. Cardiac oxidative stress and local inflammation were measured by detecting the levels of malondialdehyde, enzymatic antioxidant status and proinflammatory cytokines. Cardiac fibrosis was evaluated by observing collagen deposition via masson and sirius red staining, as well as by examining the expression of extracellular matrix proteins via Western blot analysis. The cardiac activity of profibrotic TGF-β1/p38/MK2 signaling pathway was assessed by measuring the expression of TGF-β1 and the phosphorylation levels of p38 and MK2. It was observed that mangiferin ameliorated D-galactose-induced cardiac aging, attenuated cardiac oxidative stress, inflammation and fibrosis, as well as inhibited the activation of TGF-β1/p38/MK2 signaling pathway. These results showed that mangiferin could ameliorate cardiac fibrosis in D-galactose-induced aging rats possibly via inhibiting TGF-β/p38/MK2 signaling pathway.

Utilization of Food Waste Extract as an Eco-friendly Biocatalyst for Indigo Reduction (식품 폐기물을 이용한 친환경 생촉매의 발굴과 인디고 환원에 응용)

  • Son, Kunghee;Yoo, Dong Il;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.193-198
    • /
    • 2020
  • In this study, the validity of extracts from food waste as biocatalyst for indigo reduction was examined. Dried food wastes such as apple peel and corn waste were water-extracted and freeze-dried. The reducing power of extracts for indigo was evaluated by the oxidation-reduction potential(ORP) measurement of reduction bath and color strength(K/S value) of the fabrics dyed in the indigo reduction bath. Total sugar contents of the apple peel and corn waste extracts were 60.56% and 62.36%, respectively. Antioxidant activity was 64.78% for the extract of apple peel and 7.96% for the extract of corn waste. Indigo reduction took place quickly with both extracts, and maximum color strength was obtained up to 15.91 and 12.11 within 1-3 days, respectively. The oxidation-reduction potential of reduction bath was stabilized in the range of -500 ~ -620 mV according to the kinds of food waste and the extract concentration. At higher concentration of the extracts, reduction power was maintained for longer time and stronger color strength was obtained. Compared to sodium dithionite, the reducing power of the studied extracts was lower, but the reduction stability was superior to it. The studied extracts were effective biocatalyst as biodegradable and safe alternatives to sodium dithionite for indigo reduction.

Neuroprotective Effect of Epalrestat on Hydrogen Peroxide-Induced Neurodegeneration in SH-SY5Y Cellular Model

  • Lingappa, Sivakumar;Shivakumar, Muthugounder Subramanian;Manivasagam, Thamilarasan;Somasundaram, Somasundaram Thirugnanasambandan;Seedevi, Palaniappan
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.867-874
    • /
    • 2021
  • Epalrestat (EPS) is a brain penetrant aldose reductase inhibitor, an approved drug currently used for the treatment of diabetic neuropathy. At near-plasma concentration, EPS induces glutathione biosynthesis, which in turn reduces oxidative stress in the neuronal cells. In this study, we found that EPS reduces neurodegeneration by inhibiting reactive oxygen species (ROS)-induced oxidative injury, mitochondrial membrane damage, apoptosis and tauopathy. EPS treatment up to 50 µM did not show any toxic effect on SH-SY5Y cell line (neuroblastoma cells). However, we observed toxic effect at a concentration of 100 µM and above. At 50 µM concentration, EPS showed better antioxidant activity against H2O2 (100 µM)-induced cytotoxicity, ROS formation and mitochondrial membrane damage in retinoic acid-differentiated SH-SY5Y cell line. Furthermore, our study revealed that 50 µM of EPS concentration reduced the glycogen synthase kinase-3 β (GSK3-β) expression and total tau protein level in H2O2 (100 µM)-treated cells. Findings from this study confirms the therapeutic efficacy of EPS on regulating Alzheimer's disease (AD) by regulating GSK3-β and total tau proteins phosphorylation, which helped to restore the cellular viability. This process could also reduce toxic fibrillary tangle formation and disease progression of AD. Therefore, it is our view that an optimal concentration of EPS therapy could decrease AD pathology by reducing tau phosphorylation through regulating the expression level of GSK3-β.

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals

  • Patra, Amlan Kumar;Kar, Indrajit
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.211-247
    • /
    • 2021
  • Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.

Green tea polyphenol (-)-epigallocatechin-3-gallate prevents ultraviolet-induced apoptosis in PC12 cells

  • Woo, Su-Mi;Kim, Yoon-Jung;Cai, Bangrong;Park, Sam-Young;Kim, Young;Kim, Ok Joon;Kang, In-Chol;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.179-189
    • /
    • 2020
  • Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) is a potent antioxidant with protective effects against neurotoxicity. However, it is currently unclear whether EGCG protects neuronal cells against radiation-induced damage. Therefore, the objective of this study was to investigate the effects of EGCG on ultraviolet (UV)-induced oxidative stress and apoptosis in PC12 cells. The effects of UV irradiation included apoptotic cell death, which was associated with DNA fragmentation, reactive oxygen species (ROS) production, enhanced caspase-3 and caspase-9 activity, and poly (ADP-ribose) polymerase cleavage. UV irradiation also increased the Bax/Bcl-2 ratio and mitochondrial pathway-associated cytochrome c expression. However, pretreatment with EGCG before UV exposure markedly decreased UV-induced DNA fragmentation and ROS production. Furthermore, the UV irradiation-induced increase in Bax/Bcl-2 ratio, cytochrome c upregulation, and caspase-3 and caspase-9 activation were each ameliorated by EGCG pretreatment. Additionally, EGCG suppressed UV-induced phosphorylation of p38 and rescued UV-downregulated phosphorylation of ERK. Taken together, these results suggest that EGCG prevents UV irradiation-induced apoptosis in PC12 cells by scavenging ROS and inhibiting the mitochondrial pathways known to play a crucial role in apoptosis. In addition, EGCG inhibits UV-induced apoptosis via JNK inactivation and ERK activation in PC12 cells. Thus, EGCG represents a potential neuroprotective agent that could be applied to prevent neuronal cell death induced by UV irradiation.

Microencapsulation of aronia extract and stability of encapsulated anthocyanins during sulgidduk cooking (아로니아 추출물의 미세캡슐 제조 및 설기떡의 안토시아닌 안정성 연구)

  • Choi, Yeji;Koh, Eunmi
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.163-170
    • /
    • 2022
  • Aronia (Aronia melanocarpa cv. Viking) contains high amounts of anthocyanins, which are susceptible to heat. This study was conducted to identify an efficient coating material for encapsulating aronia extract to enhance the stability of anthocyanins during cooking. Maltodextrin, maltodextrin+gum Arabic, and maltodextrin+carboxymethyl cellulose were chosen as the coating materials, mixed with aronia extract at a ratio of 2:1, and freeze-dried after homogenization. The encapsulated aronia extract was then used as a sulgidduk ingredient. Sulgidduk prepared with the encapsulated aronia had significantly higher values for redness, anthocyanin retention, total phenolic content, and antioxidant activity compared to sulgidduk prepared with non-encapsulated aronia. In addition, the sensory evaluation revealed that sulgidduk prepared with encapsulated aronia produced better color and taste. These results indicate that the encapsulation of aronia extract improved the stability of the anthocyanins in aronia, and encapsulated aronia can be used as a functional colorant in the food industry.

β-carotene regulates cancer stemness in colon cancer in vivo and in vitro

  • Lee, Kyung Eun;Kwon, Minseo;Kim, Yoo Sun;Kim, Yerin;Chung, Min Gi;Heo, Seung Chul;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.16 no.2
    • /
    • pp.161-172
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Colorectal cancer (CRC) is the third most common cancer worldwide and has a high recurrence rate, which is associated with cancer stem cells (CSCs). β-carotene (BC) possesses antioxidant activity and several anticancer mechanisms. However, no investigation has examined its effect on colon cancer stemness. MATERIALS/METHODS: CD133+CD44+ HCT116 and CD133+CD44+ HT-29 cells were isolated and analyzed their self-renewal capacity by clonogenic and sphere formation assays. Expressions of several CSCs markers and Wnt/β-catenin signaling were examined. In addition, CD133+CD44+ HCT116 cells were subcutaneously injected in xenograft mice and analyzed the effect of BC on tumor formation, tumor volume, and CSCs markers in tumors. RESULTS: BC inhibited self-renewal capacity and CSC markers, including CD44, CD133, ALDH1A1, NOTCH1, Sox2, and β-catenin in vitro. The effects of BC on CSC markers were confirmed in primary cells isolated from human CRC tumors. BC supplementation decreased the number and size of tumors and delayed the tumor-onset time in xenograft mice injected with CD133+CD44+ HCT116 cells. The inhibitory effect of BC on CSC markers and the Wnt/β-catenin signaling pathway in tumors was confirmed in vivo as well. CONCLUSIONS: These results suggest that BC may be a potential therapeutic agent for colon cancer by targeting colon CSCs.

Protective effects of Populus tomentiglandulosa against cognitive impairment by regulating oxidative stress in an amyloid beta25-35-induced Alzheimer's disease mouse model

  • Kwon, Yu Ri;Kim, Ji-Hyun;Lee, Sanghyun;Kim, Hyun Young;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.16 no.2
    • /
    • pp.173-193
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Alzheimer's disease (AD) is one of the most representative neurodegenerative disease mainly caused by the excessive production of amyloid beta (Aβ). Several studies on the antioxidant activity and protective effects of Populus tomentiglandulosa (PT) against cerebral ischemia-induced neuronal damage have been reported. Based on this background, the present study investigated the protective effects of PT against cognitive impairment in AD. MATERIALS/METHODS: We orally administered PT (50 and 100 mg/kg/day) for 14 days in an Aβ25-35-induced mouse model and conducted behavioral experiments to test cognitive ability. In addition, we evaluated the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and measured the production of lipid peroxide, nitric oxide (NO), and reactive oxygen species (ROS) in tissues. RESULTS: PT treatment improved the space perceptive ability in the T-maze test, object cognitive ability in the novel object recognition test, and spatial learning/long-term memory in the Morris water-maze test. Moreover, the levels of AST and ALT were not significantly different among the groups, indicating that PT did not show liver toxicity. Furthermore, administration of PT significantly inhibited the production of lipid peroxide, NO, and ROS in the brain, liver, and kidney, suggesting that PT protected against oxidative stress. CONCLUSIONS: Our study demonstrated that administration of PT improved Aβ25-35-induced cognitive impairment by regulating oxidative stress. Therefore, we propose that PT could be used as a natural agent for AD improvement.

Cysteine improves boar sperm quality via glutathione biosynthesis during the liquid storage

  • Zhu, Zhendong;Zeng, Yao;Zeng, Wenxian
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.166-176
    • /
    • 2022
  • Objective: Sperm is particularly susceptible to reactive oxygen species (ROS) stress. Glutathione (GSH) is an endogenous antioxidant that regulates sperm redox homeostasis. However, it is not clear whether boar sperm could utilize cysteine for synthesis GSH to protect sperm quality from ROS damage. Therefore, the present study was undertaken to elucidate the mechanism of how cysteine is involved in protecting boar sperm quality during liquid storage. Methods: Sperm motility, membrane integrity, lipid peroxidation, 4-hydroxyIlonenal (4-HNE) modifications, mitochondrial membrane potential, as well as the levels of ROS, GSH, and, ATP were evaluated. Moreover, the enzymes (GCLC: glutamate cysteine ligase; GSS: glutathione synthetase) that are involved in glutathione synthesis from cysteine precursor were detected by western blotting. Results: Compared to the control, addition of 1.25 mM cysteine to the liquid storage significantly increased boar sperm progressive motility, straight-line velocity, curvilinear velocity, beat-cross frequency, membrane integrity, mitochondrial membrane potential, ATP level, acrosome integrity, activities of superoxide dismutase and catalase, and GSH level, while reducing the ROS level, lipid peroxidation and 4-HNE modifications. It was also observed that the GCLC and GSS were expressed in boar sperm. Interestingly, when we used menadione to induce sperm with ROS stress, the menadione associated damages were observed to be reduced by the cysteine supplementation. Moreover, compared to the cysteine treatment, the γ-glutamylcysteine synthetase (γ-GCS) activity, GSH level, mitochondrial membrane potential, ATP level, membrane integrity and progressive motility in boar sperm were decreased by supplementing with an inhibitor of GSH synthesis, buthionine sulfoximine. Conclusion: These data suggest that boar sperm could biosynthesize the GSH from cysteine in vitro. Therefore, during storage, addition of cysteine improves boar sperm quality via enhancing the GSH synthesis to resist ROS stress.