• 제목/요약/키워드: antinociceptive mechanism

Search Result 44, Processing Time 0.019 seconds

The Mechanism of Thermoregulatory Action of Capsaicin Is Different from That of Its Antinociceptive Effect in Guinea Pig

  • Yi-Sook JUNG;Tai-Soon CHO;Shin, Hwa-Sup
    • Biomolecules & Therapeutics
    • /
    • v.5 no.2
    • /
    • pp.211-214
    • /
    • 1997
  • In the present study, we investigated the mechanisms of antinociceptive effect and thermoregulatory action of capsaicin in guinea pigs. The administration of capsaicin (5 mg/kg, s.c.) caused a significant decrease in frequency of eye wiping, an indicative of nociceptive threshold. This antinociceptive effect of calsaicin was abolished by co-administration of capsazepine (30 mg/kg, s.c.) with capsaicin, suggesting the involvement of a vanilloid receptor in the antinociceptive action of capsaicin. The administration of capsaicin (1 mg/kg, s.c.) produced a significant decrease in body temperature of guinea pigs. The maximum decrease in body temperature by 2 degrees was shown 1 hour after the treatment, and this decrease was not reversed by coadministration of capsazepine. In conclusion, it is suggested that the mechanism of action of capsaicin-induced thermoregulation involves different pathways from that of capsaicin-induced antinociception.

  • PDF

Spinal Noradrenergic Modulation and the Role of the Alpha-2 Receptor in the Antinociceptive Effect of Intrathecal Nefopam in the Formalin Test

  • Jeong, Shin Ho;Heo, Bong Ha;Park, Sun Hong;Kim, Woong Mo;Lee, Hyung Gon;Yoon, Myung Ha;Choi, Jeong Il
    • The Korean Journal of Pain
    • /
    • v.27 no.1
    • /
    • pp.23-29
    • /
    • 2014
  • Background: Nefopam has shown an analgesic effect on acute pain including postoperative pain. The reuptake of monoamines including serotonin and noradrenaline has been proposed as the mechanism of the analgesic action of nefopam, but it remains unclear. Although alpha-adrenergic agents are being widely used in the perioperative period, the role of noradrenergic modulation in the analgesic effect of nefopam has not been fully addressed. Methods: Changes in the antinociceptive effect of intrathecal (i.t.) nefopam against formalin-elicited flinching responses were explored in Sprague-Dawley rats pretreated with i.t. 6-hydroxydopamine (6-OHDA), which depletes spinal noradrenaline. In addition, antagonism to the effect of nefopam by prazosin and yohimbine was evaluated to further elucidate the antinociceptive mechanism of i.t. nefopam. Results: Pretreatment with i.t. 6-OHDA alone did not alter the flinching responses in either phase of the formalin test, while it attenuated the antinociceptive effect of i.t. nefopam significantly during phase 1, but not phase 2. The antagonist of the alpha-2 receptor, but not the alpha-1 receptor, reduced partially, but significantly, the antinociceptive effect of i.t. nefopam during phase 1, but not during phase 2. Conclusions: This study demonstrates that spinal noradrenergic modulation plays an important role in the antinociceptive effect of i.t. nefopam against formalin-elicited acute initial pain, but not facilitated pain, and this action involves the spinal alpha-2 but not the alpha-1 receptor.

Anti-inflammatory and antinociceptive effects of sitagliptin in animal models and possible mechanisms involved in the antinociceptive activity

  • Valiollah Hajhashemi;Hossein Sadeghi;Fatemeh Karimi Madab
    • The Korean Journal of Pain
    • /
    • v.37 no.1
    • /
    • pp.26-33
    • /
    • 2024
  • Background: Sitagliptin is an antidiabetic drug that inhibits dipeptidyl peptidase-4 enzyme. This study aimed to investigate the antinociceptive and anti-inflammatory effects of sitagliptin in formalin and carrageenan tests and determine the possible mechanism(s) of its antinociceptive activity. Methods: Male Swiss mice (25-30 g) and male Wistar rats (180-220 g) were used for formalin and carrageenan tests, respectively. In the formalin test, paw licking time and in the carrageenan test, paw thickness were considered as indexes of pain behavior and inflammation respectively. Three doses of sitagliptin (2.5, 5, and 10 mg/kg) were used in these tests. Also, several antagonists and enzyme inhibitors were used to evaluate the role of adrenergic, serotonergic, dopaminergic, and opioid receptors as well as the NO/cGMP/KATP pathway in the antinociceptive effect of sitagliptin (5 mg/kg). Results: Sitagliptin showed significant antinociceptive and anti-inflammatory effects in the formalin and carrageenan tests respectively. In the carrageenan test, all three doses of sitagliptin significantly (P < 0.001) reduced paw thickness. Pretreatment with yohimbine, prazosin, propranolol, naloxone, and cyproheptadine could not reverse the antinociceptive effect of sitagliptin (5 mg/Kg), which indicates that adrenergic, opioid, and serotonin receptors (5HT2) are not involved in the antinociceptive effects. L-NAME, methylene blue, glibenclamide, ondansetron, and sulpiride were able to reverse this effect. Conclusions: NO/cGMP/KATP, 5HT3 and D2 pathways play an important role in the antinociceptive effect of sitagliptin. Additionally significant anti-inflammatory effects observed in the carrageenan test might contribute in reduction of pain response in the second phase of the formalin test.

Sulfuretin, an Antinociceptive and Antiinflammatory Flavonoid from Rhus verniciflua

  • Choi, Jong-Won;Yoon, Byung-Jae;Han, Yong-Nam;Lee, Sang-Kook;Lee, Kyung-Tae;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.9 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • This study was undertaken to evaluate the antinociceptive and antiinflammatory effects of the heartwood extract of Rhus verniciflua (Anacardiaceae) and the two major components, sulfuretin and fustin. The MeOH extract, its EtOAc-soluble portion and sulfuretin showed significant antinociceptive activity in writhing and hot plate test assays and antiinflammaory effects in carrageenan-induced hind paw edema in rats. In particular, treatment of sulfuretin with 10 mg/kg dose (i.p.) reduced writhing frequency by 48.0% (p<0.01) compared to that of a control group. Further, the treatment of sulfuretin (5, 10 mg/kg, i.p.) for 7 days prevented the carrageenan-induced hind paw edema significantly (p<0.01). The antiinflammatory effect of sulfuretin was also confirmed by microscopic observation of mast cell numbers in muscle. In addition, sulfuretin suppressed the cyclooxygenase- 2 (COX-2) activity $(IC_{50}\;=\;28.7\;{\mu}M)$ in lipopolysaccharide-activated macrophage cells. This result indicates that the inhibitory effect of sulfuretin on COX-2 may be one of the antinociceptive/antiinflammatory mechanism.

Effects of various receptor antagonists on the peripheral antinociceptive activity of aqueous extracts of Dicranopteris linearis, Melastoma malabathricum and Bauhinia purpurea leaves in mice

  • Zakaria, Zainul Amiruddin;Sodri, Nurul Husna;Hassan, Halmy;Anuar, Khairiyah;Abdullah, Fatimah Corazon
    • CELLMED
    • /
    • v.2 no.4
    • /
    • pp.38.1-38.6
    • /
    • 2012
  • The present study aimed to determine the possible mechanisms of the peripheral antinociception of the aqueous extracts of Dicranopteris linearis (AEDL), Melastoma malabathricum (AEMM) and Bauhinia purpurea (AEBP) leaves in mice. Briefly, the antinociceptive profile of each extract (300, 500, and 1000 mg/kg; subcutaneous (s.c.)), was established using the abdominal constriction test. A single dose (500 mg/kg) of each extract (s.c.) was pre-challenged for 10 min with various pain receptors' antagonists or pain mediators' blockers and 30 min later subjected to the antinociceptive assay to determine the possible mechanism(s) involved. Based on the results obtained, all extracts exerted significant (p < 0.05) antinociceptive activity with dose-dependent activity observed only with the AEMM. Furthermore, the antinociception of AEDL was attenuated by naloxone, atropine, yohimbine and theophylline; AEMM was reversed by yohimbine, theophylline, thioperamide, pindolol, reserpine, and 4-chloro-DL-phenylalanine methyl ester hydrochloride; and of AEBP was inhibited by naloxone, haloperidol, yohimbine and reserpine. In conclusion, the antinociceptive activity of those extracts possibly involved the activation of several pain receptors (i.e. opioids, muscarinic, ${\alpha}_2$-adrenergic and adenosine receptors, adenosine, H3-histaminergic and $5HT_{1A}$, dopaminergic receptors).

Assessment of antinociceptive property of Cynara scolymus L. and possible mechanism of action in the formalin and writhing models of nociception in mice

  • Pegah Yaghooti;Samad Alimoahmmadi
    • The Korean Journal of Pain
    • /
    • v.37 no.3
    • /
    • pp.218-232
    • /
    • 2024
  • Background: Cynara scolymus has bioactive constituents and has been used for therapeutic actions. The present study was undertaken to investigate the mechanisms underlying pain-relieving effects of the hydroethanolic extract of C. scolymus (HECS). Methods: The antinociceptive activity of HECS was assessed through formalin and acetic acid-induced writhing tests at doses of 50, 100 and 200 mg/kg intraperitoneally. Additionally, naloxone (non-selective opioid receptors antagonist, 2 mg/kg), atropine (non-selective muscarinic receptors antagonist, 1 mg/kg), chlorpheniramine (histamine H1-receptor antagonist, 20 mg/kg), cimetidine (histamine H2-receptor antagonist, 12.5 mg/kg), flumazenil (GABAA/BDZ receptor antagonist, 5 mg/kg) and cyproheptadine (serotonin receptor antagonist, 4 mg/kg) were used to determine the systems implicated in HECS-induced analgesia. Impact of HECS on locomotor activity was executed by open-field test. Determination of total phenolic content (TPC) and total flavonoid content (TFC) was done. Evaluation of antioxidant activity was conducted employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Results: HECS (50, 100 and 200 mg/kg) significantly indicated dose dependent antinociceptive activity against pain-related behavior induced by formalin and acetic acid (P < 0.001). Pretreatment with naloxone, atropine and flumazenil significantly reversed HECS-induced analgesia. Antinociceptive effect of HECS remained unaffected by chlorpheniramine, cimetidine and cyproheptadine. Locomotor activity was not affected by HECS. TPC and TFC of HECS were 59.49 ± 5.57 mgGAE/g dry extract and 93.39 ± 17.16 mgRE/g dry extract, respectively. DPPH free radical scavenging activity (IC50) of HECS was 161.32 ± 0.03 ㎍/mL. Conclusions: HECS possesses antinociceptive activity which is mediated via opioidergic, cholinergic and GABAergic pathways.

Antinociceptive and anti-inflammatory effects of ginsenoside Rf in a rat model of incisional pain

  • Kim, Min Kyoung;Kang, Hyun;Baek, Chong Wha;Jung, Yong Hun;Woo, Young Cheol;Choi, Geun Joo;Shin, Hwa Yong;Kim, Kyung Soo
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.183-191
    • /
    • 2018
  • Background: Ginseng saponin has long been used as a traditional Asian medicine and is known to be effective in treating various kinds of pain. Ginsenoside Rf is one of the biologically active saponins found in ginseng. We evaluated ginsenoside Rf's antinociceptive and anti-inflammatory effects, and its mechanism of action on adrenergic and serotonergic receptors, in an incisional pain model. Methods: Mechanical hyperalgesia was induced via plantar incision in rats followed by intraperitoneal administration of increasing doses of ginsenoside Rf (vehicle, 0.5 mg/kg, 1 mg/kg, 1.5 mg/kg, and 2 mg/kg). The antinociceptive effect was also compared in a Positive Control Group that received a ketorolac (30 mg/kg) injection, and the $Na{\ddot{i}}ve$ Group, which did not undergo incision. To evaluate the mechanism of action, rats were treated with prazosin (1 mg/kg), yohimbine (2 mg/kg), or ketanserin (1 mg/kg) prior to receiving ginsenoside Rf (1.5 mg/kg). The mechanical withdrawal threshold was measured using von Frey filaments at various time points before and after ginsenoside Rf administration. To evaluate the anti-inflammatory effect, serum interleukin $(IL)-1{\beta}$, IL-6, and tumor necrotizing $factor-{\alpha}$ levels were measured. Results: Ginsenoside Rf increased the mechanical withdrawal threshold significantly, with a curvilinear dose-response curve peaking at 1.5 mg/kg. $IL-1{\beta}$, IL-6, and tumor necrotizing $factor-{\alpha}$ levels significantly decreased after ginsenoside Rf treatment. Ginsenoside Rf's antinociceptive effect was reduced by yohimbine, but potentiated by prazosin and ketanserin. Conclusion: Intraperitoneal ginsenoside Rf has an antinociceptive effect peaking at a dose of 1.5 mg/kg. Anti-inflammatory effects were also detected.

Antinociceptive and Anti-inflammatory Properties of Cinnamomum cassia Derived-cinnamaldehyde in Rodents (육계 유래 Cinnamaldehyde의 투여와 항염증 및 진통효과의 평가)

  • Je, Hyun-Dong
    • YAKHAK HOEJI
    • /
    • v.56 no.4
    • /
    • pp.236-239
    • /
    • 2012
  • The aim of present study was to investigate the possible influence and the related mechanism of Cinnamomum cassia derived-cinnamaldehyde on the inflammation or nociception. Cinnamomum cassia was referred to be treated for common cold or dyspepsia in the traditional medicine. However, there are no reports on the antinociceptive or anti-inflammatory properties of cinnamaldehyde, the primary ingredient of Cinnamomum cassia. We hypothesized that cinnamaldehyde would play a role in the modulation of inflammation or nociception evoked by carrageenan, acetic acid or heat. Male Institute of Cancer Research mice were used and the size of edema, frequency of writhing and latency of abnormal behaviors such as licking, flicking, shaking or jumping were measured and recorded. The present study was carried out to evaluate the antiinflammatory and antinociceptive effects of cinnamaldehyde. The administration of cinnamaldehyde (30 and 100 mg/kg) inhibited carrageenan-induced paw edema only at the final phase, suggesting the blockade of synthesis or release of prostaglandins. It also reduced the frequency of the acetic acid-induced writhing reflex in mice. In addition, the administration of cinnamaldehyde prolonged the latency for extraordinary reaction at the hot plate in mice. In conclusion, cinnamaldehyde has anti-inflammatory and analgesic properties and is a potential therapeutic for inflammation and nociception.

Antinociceptive Effects of Alpinia katsumadai via Cyclooxygenase-2 Inhibition

  • Choi, Jin-Kyu;Kim, Kwang-Mi;Yeom, Myeong-Hoon;Cho, Hee-Yeong;Lee, Hye-Ja;Park, Mi-Kyung;Jeong, Kyung-Chae;Lee, Byung-Il;Noh, Min-Soo;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.159-165
    • /
    • 2010
  • Alpinia katsumadai has been widely used in traditional Chinese and Korean medicine to treat a variety of conditions including emesis and gastric disorders such as gastric pain and distended abdomen. To investigate the antinociceptive potential and mechanism of A. katsumadai, ethanolic extracts of A. katsumadai were assayed on cyclooxygenase-2 and evaluated for analgesic activity based on phenylbenzoquinone (PBQ)-induced writhing and carrageenan-induced hyperalgesia tests. A. katsumadai extracts inhibited the cyclooxygenase-2 enzyme activity in a dose-dependent fashion at an $IC_{50}$ value of 0.044 ${\mu}g$/ml. A. katsumadai extract (30-300 mg/kg, orally (p.o.) administered) significantly inhibited PBQ-induced writhing. This inhibition was judged not to be a false positive because a Rota-rod test revealed no difference in muscular coordination when compared to the controls. With regard to the carrageenan-induced hyperalgesia, A. katsumadai extract (30-300 mg/kg, p.o.) produced a significant, dose-dependent increase in the withdrawal response latencies. Naloxone did not reverse the analgesic effect of A. katsumadai extract in the carrageenan-induced hyperalgesia. Taken together, these results suggest that the antinociceptive activity of A. katsumadai is not related to the opioid receptor. A. katsumadai extract has remarkable, non-opioidreceptor-mediated analgesic effects on PBQ-induced writhing and carrageenan-induced hyperalgesia that occur via cyclooxygenase-2 inhibition.

The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems

  • Dehkordi, Faraz Mahdian;Kaboutari, Jahangir;Zendehdel, Morteza;Javdani, Moosa
    • The Korean Journal of Pain
    • /
    • v.32 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Background: Pain is a complex mechanism which involves different systems, including the opioidergic and GABAergic systems. Due to the side effects of chemical analgesic agents, attention toward natural agents have been increased. Artemisinin is an herbal compound with widespread modern and traditional therapeutic indications, which its interaction with the GABAergic system and antinoniceptive effects on neuropathic pain have shown. Therefore, this study was designed to evaluate the antinociceptive effects of artemisinin during inflammatory pain and interaction with the GABAergic and opioidergic systems by using a writhing response test. Methods: On the whole, 198 adult male albino mice were used in 4 experiments, including 9 groups (n = 6) each with three replicates, by intraperitoneal (i.p.) administration of artemisinin (2.5, 5, and 10 mg/kg), naloxone (2 mg/kg), bicuculline (2 mg/kg), saclofen (2 mg/kg), indomethacin (5 mg/kg), and ethanol (10 mL/kg). Writhing test responses were induced by i.p. injection of 10 mL/kg of 0.6% acetic acid, and the percentage of writhing inhibition was recorded. Results: Results showed significant dose dependent anti-nociceptive effects from artemisinin which, at a 10 mg/kg dose, was statistically similar to indomethacin. Neither saclofen nor naloxone had antinociceptive effects and did not antagonize antinociceptive effects of artemisinin, whereas bicuculline significantly inhibited the antinocicptive effect of artemisinin. Conclusions: It seems that antinocicptive effects of artemisinin are mediated by $GABA_A$ receptors.