DOI QR코드

DOI QR Code

Anti-inflammatory and antinociceptive effects of sitagliptin in animal models and possible mechanisms involved in the antinociceptive activity

  • Valiollah Hajhashemi (Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences) ;
  • Hossein Sadeghi (Department of Pharmacology, Faculty of Medicine, Yasuj University of Medical Sciences) ;
  • Fatemeh Karimi Madab (Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences)
  • Received : 2023.09.11
  • Accepted : 2023.12.03
  • Published : 2024.01.01

Abstract

Background: Sitagliptin is an antidiabetic drug that inhibits dipeptidyl peptidase-4 enzyme. This study aimed to investigate the antinociceptive and anti-inflammatory effects of sitagliptin in formalin and carrageenan tests and determine the possible mechanism(s) of its antinociceptive activity. Methods: Male Swiss mice (25-30 g) and male Wistar rats (180-220 g) were used for formalin and carrageenan tests, respectively. In the formalin test, paw licking time and in the carrageenan test, paw thickness were considered as indexes of pain behavior and inflammation respectively. Three doses of sitagliptin (2.5, 5, and 10 mg/kg) were used in these tests. Also, several antagonists and enzyme inhibitors were used to evaluate the role of adrenergic, serotonergic, dopaminergic, and opioid receptors as well as the NO/cGMP/KATP pathway in the antinociceptive effect of sitagliptin (5 mg/kg). Results: Sitagliptin showed significant antinociceptive and anti-inflammatory effects in the formalin and carrageenan tests respectively. In the carrageenan test, all three doses of sitagliptin significantly (P < 0.001) reduced paw thickness. Pretreatment with yohimbine, prazosin, propranolol, naloxone, and cyproheptadine could not reverse the antinociceptive effect of sitagliptin (5 mg/Kg), which indicates that adrenergic, opioid, and serotonin receptors (5HT2) are not involved in the antinociceptive effects. L-NAME, methylene blue, glibenclamide, ondansetron, and sulpiride were able to reverse this effect. Conclusions: NO/cGMP/KATP, 5HT3 and D2 pathways play an important role in the antinociceptive effect of sitagliptin. Additionally significant anti-inflammatory effects observed in the carrageenan test might contribute in reduction of pain response in the second phase of the formalin test.

Keywords

Acknowledgement

This research was financially supported by Isfahan University of Medical Sciences, Isfahan, Iran (Grant no: 3400919).

References

  1. Scott LJ. Sitagliptin: a review in type 2 diabetes. Drugs 2017; 77: 209-24.  https://doi.org/10.1007/s40265-016-0686-9
  2. El-Agamy DS, Abo-Haded HM, Elkablawy MA. Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats. Exp Biol Med (Maywood) 2016; 241: 1577-87.  https://doi.org/10.1177/1535370216643418
  3. Kelleni MT, Amin EF, Abdelrahman AM. Effect of metformin and sitagliptin on doxorubicin-induced cardiotoxicity in rats: impact of oxidative stress, inflammation, and apoptosis. J Toxicol 2015; 2015: 424813.
  4. Ujhelyi J, Ujhelyi Z, Szalai A, Laszlo JF, Cayasso M, Vecsernyes M, et al. Analgesic and anti-inflammatory effectiveness of sitagliptin and vildagliptin in mice. Regul Pept 2014; 194-195: 23-9. https://doi.org/10.1016/j.regpep.2014.09.006
  5. Kawasaki T, Chen W, Htwe YM, Tatsumi K, Dudek SM. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2018; 315: L834-45.  https://doi.org/10.1152/ajplung.00031.2018
  6. Yam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R. General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int J Mol Sci 2018; 19: 2164.
  7. Riedel W, Neeck G. Nociception, pain, and antinociception: current concepts. Z Rheumatol 2001; 60: 404-15.  https://doi.org/10.1007/s003930170003
  8. Beck TC, Dix TA, Reichel CM. Targeting peripheral kappa opioid receptors for the treatment of chronic pain: review article. Adv Nanomed Nanotechnol Res 2019; 1: 16-9. https://doi.org/10.4155/fdd-2019-0022
  9. Bardin L. The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol 2011; 22: 390-404.  https://doi.org/10.1097/FBP.0b013e328349aae4
  10. Pertovaara A. The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol 2013; 716: 2-7.  https://doi.org/10.1016/j.ejphar.2013.01.067
  11. Wood PB. Mesolimbic dopaminergic mechanisms and pain control. Pain 2006; 120: 230-4.  https://doi.org/10.1016/j.pain.2005.12.014
  12. Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: the dual effect of nitric oxide in the nociceptive system. Nitric Oxide 2011; 25: 243-54.  https://doi.org/10.1016/j.niox.2011.06.004
  13. Florentino IF, Galdino PM, De Oliveira LP, Silva DP, Pazini F, Vanderlinde FA, et al. Involvement of the NO/cGMP/KATP pathway in the antinociceptive effect of the new pyrazole 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-021). Nitric Oxide 2015; 47: 17-24.  https://doi.org/10.1016/j.niox.2015.02.146
  14. Hajhashemi V, Salimian M, Hajihashemi O. Involvement of the NO/cGMP/K ATP pathway in the antinociceptive effect of rosemary (Rosmarinus officinalis) essential oil in mice. Behav Pharmacol 2023; 34: 37-44. https://doi.org/10.1097/FBP.0000000000000709
  15. Pecikoza U, Micov A, Tomic M, Stepanovic-Petrovic R. Eslicarbazepine acetate reduces trigeminal nociception: possible role of adrenergic, cholinergic and opioid receptors. Life Sci 2018; 214: 167-75. https://doi.org/10.1016/j.lfs.2018.10.059
  16. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain 1992; 51: 5-17.  https://doi.org/10.1016/0304-3959(92)90003-T
  17. Hajhashemi V, Khodarahmi G, Asadi P, Rajabi H. Evaluation of the antinociceptive effects of a selection of triazine derivatives in mice. Korean J Pain 2022; 35: 440-6.  https://doi.org/10.3344/kjp.2022.35.4.440
  18. Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol 2003; 225: 115-21. https://doi.org/10.1385/1-59259-374-7:115
  19. Vazquez E, Navarro M, Salazar Y, Crespo G, Bruges G, Osorio C, et al. Systemic changes following carrageenan-induced paw inflammation in rats. Inflamm Res 2015; 64: 333-42.  https://doi.org/10.1007/s00011-015-0814-0
  20. Savegnago L, Jesse CR, Santos AR, Rocha JB, Nogueira CW. Mechanisms involved in the antinociceptive effect caused by diphenyl diselenide in the formalin test. J Pharm Pharmacol 2008; 60: 1679-86. https://doi.org/10.1211/jpp.60.12.0015
  21. Viguier F, Michot B, Hamon M, Bourgoin S. Multiple roles of serotonin in pain control mechanisms--implications of 5-HT7 and other 5-HT receptor types. Eur J Pharmacol 2013; 716: 8-16.  https://doi.org/10.1016/j.ejphar.2013.01.074
  22. Kapur S, Zipursky RB, Jones C, Wilson AA, DaSilva JD, Houle S. Cyproheptadine: a potent in vivo serotonin antagonist. Am J Psychiatry 1997; 154: 884.
  23. Tan JQ, Fan CK, Cui J, Xu B. [Analgesic and antipyretic effects of cyproheptadine]. Zhongguo Yao Li Xue Bao 1990; 11: 204-7. Chinese. 
  24. Vale C, Oliveira F, Assuncao J, Fontes-Ribeiro C, Pereira F. Co-administration of ondansetron decreases the analgesic efficacy of tramadol in humans. Pharmacology 2011; 88: 182-7.  https://doi.org/10.1159/000330740
  25. Benarroch EE. Involvement of the nucleus accumbens and dopamine system in chronic pain. Neurology 2016; 87: 1720-6. https://doi.org/10.1212/WNL.0000000000003243
  26. Wood PB. Role of central dopamine in pain and analgesia. Expert Rev Neurother 2008; 8: 781-97. https://doi.org/10.1586/14737175.8.5.781
  27. Morgan MJ, Franklin KB. Dopamine receptor subtypes and formalin test analgesia. Pharmacol Biochem Behav 1991; 40: 317-22.  https://doi.org/10.1016/0091-3057(91)90560-O
  28. Miclescu A, Gordh T. Nitric oxide and pain: 'something old, something new'. Acta Anaesthesiol Scand 2009; 53: 1107-20.  https://doi.org/10.1111/j.1399-6576.2009.02054.x
  29. Kawabata A, Manabe S, Manabe Y, Takagi H. Effect of topical administration of L-arginine on formalininduced nociception in the mouse: a dual role of peripherally formed NO in pain modulation. Br J Pharmacol 1994; 112: 547-50.  https://doi.org/10.1111/j.1476-5381.1994.tb13108.x
  30. Bulutcu F, Dogrul A, Guc MO. The involvement of nitric oxide in the analgesic effects of ketamine. Life Sci 2002; 71: 841-53.  https://doi.org/10.1016/S0024-3205(02)01765-4
  31. Ortiz MI, Granados-Soto V, Castaneda-Hernandez G. The NO-cGMP-K+ channel pathway participates in the antinociceptive effect of diclofenac, but not of indomethacin. Pharmacol Biochem Behav 2003; 76: 187-95.  https://doi.org/10.1016/S0091-3057(03)00214-4
  32. Lazaro-Ibanez GG, Torres-Lopez JE, Granados-Soto V. Participation of the nitric oxide-cyclic GMP-ATP-sensitive K(+) channel pathway in the antinociceptive action of ketorolac. Eur J Pharmacol 2001; 426: 39-44.  https://doi.org/10.1016/S0014-2999(01)01206-7
  33. Sakurada C, Sugiyama A, Nakayama M, Yonezawa A, Sakurada S, Tan-No K, et al. Antinociceptive effect of spinally injected L-NAME on the acute nociceptive response induced by low concentrations of formalin. Neurochem Int 2001; 38: 417-23.  https://doi.org/10.1016/S0197-0186(00)00110-8
  34. Babbedge RC, Hart SL, Moore PK. Anti-nociceptive activity of nitric oxide synthase inhibitors in the mouse: dissociation between the effect of L-NAME and L-NMMA. J Pharm Pharmacol 1993; 45: 77-9.  https://doi.org/10.1111/j.2042-7158.1993.tb03686.x
  35. Alves DP, Soares AC, Francischi JN, Castro MS, Perez AC, Duarte ID. Additive antinociceptive effect of the combination of diazoxide, an activator of ATPsensitive K+ channels, and sodium nitroprusside and dibutyryl-cGMP. Eur J Pharmacol 2004; 489: 59-65.  https://doi.org/10.1016/j.ejphar.2004.02.022
  36. Yamazumi I, Okuda T, Koga Y. Involvement of potassium channels in spinal antinociceptions induced by fentanyl, clonidine and bethanechol in rats. Jpn J Pharmacol 2001; 87: 268-76. https://doi.org/10.1254/jjp.87.268
  37. De Paz-Campos MA, Chavez-Pina AE, Ortiz MI, Castaneda-Hernandez G. Evidence for the participation of ATP-sensitive potassium channels in the antinociceptive effect of curcumin. Korean J Pain 2012; 25: 221-7.  https://doi.org/10.3344/kjp.2012.25.4.221
  38. Makdissi A, Ghanim H, Vora M, Green K, Abuaysheh S, Chaudhuri A, et al. Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab 2012; 97: 3333-41.  https://doi.org/10.1210/jc.2012-1544