• Title/Summary/Keyword: antimalarial activities

Search Result 15, Processing Time 0.027 seconds

Antimalarial Activity of C-10 Substituted Triazolyl Artemisinin

  • Park, Gab-Man;Park, Hyun;Oh, Sangtae;Lee, Seokjoon
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.661-665
    • /
    • 2017
  • We synthesized C-10 substituted triazolyl artemisinins by the Huisgen cycloaddition reaction between dihydroartemisinins (2) and variously substituted 1, 2, 3-triazoles (8a-8h). The antimalarial activities of 32 novel artemisinin derivatives were screened against a chloroquine-resistant parasite. Among them, triazolyl artemisinins with electron-withdrawing groups showed stronger antimalarial activities than those shown by the derivatives having electron-donating groups. In particularly, m-chlorotriazolyl artemisinin (9d-12d) showed antimalarial activity equivalent to that of artemisinin and could be a strong drug candidate.

Biologically active compounds from natural and marine natural organisms with antituberculosis, antimalarial, leishmaniasis, trypanosomiasis, anthelmintic, antibacterial, antifungal, antiprotozoal, and antiviral activities

  • Asif, Mohammad
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.22.1-22.19
    • /
    • 2016
  • The biologically active compounds derived from different natural organisms such as animals, plants, and microorganisms like algae, fungi, bacteria and merine organisms. These natural compounds possess diverse biological activities like anthelmintic, antibacterial, antifungal, antimalarial, antiprotozoal, antituberculosis, and antiviral activities. These biological active compounds were acted by variety of molecular targets and thus may potentially contribute to several pharmacological classes. The synthesis of natural products and their analogues provides effect of structural modifications on the parent compounds which may be useful in the discovery of potential new drug molecules with different biological activities. Natural organisms have developed complex chemical defense systems by repelling or killing predators, such as insects, microorganisms, animals etc. These defense systems have the ability to produce large numbers of diverse compounds which can be used as new drugs. Thus, research on natural products for novel therapeutic agents with broad spectrum activities and will continue to provide important new drug molecules.

Syntheses and Iron(II) Induced Reactions of Phenyl-Substituted 1,2,4-Trioxanes

  • 오창호;Gary H. Posner
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.644-648
    • /
    • 1997
  • Introduction of an alkyl substituent at the $C_{4\beta}$ position of antimalarial trioxanes has caused them to become more active in their antimalarial activity. We have designed a structurally simple 4β-phenyl substituted trioxane (3) as an active antimalarial since it can form a more stable carbon radical when reacting with ferrous bromide. The trioxane 3 has been prepared along with the corresponding isomer 4 according to the previously reported procedure. The synthesized trioxanes 3 and 4 were finally separated by using HPLC and assigned their stereochemistry by spectroscopy and X-ray crystallography. Their antimalarial activities were surprisingly low. The low activity was then rationalized based on the product distribution of the ferrous ion induced reaction of these trioxanes. These trioxanes with ferrous bromide did not produce any detectable amount of the corresponding $C_4$-hydroxylated product, consistent with the fact that neither $C_{4\beta}$-phenyl substituted nor $C_{4\alpha}$-phenyl substituted trioxane has any antimalarial activity. It implies that a $C_4$ substituent of antimalarial trioxanes has to stabilize an adjacent carbon-centered radical in a specific stability range in order to show a good antimalarial activity. This study, combined with related studies, could help develop more potent antimalarial trioxanes.

Antimalarial Activity and Phytochemical Profile of Ethanolic and Aqueous Extracts of Bidara Laut (Strychnos ligustrina Blum) Wood

  • MANURUNG, Harisyah;SARI, Rita Kartika;SYAFII, Wasrin;CAHYANINGSIH, Umi;EKASARI, Wiwied
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.587-596
    • /
    • 2019
  • This study aimed to determine the antimalarial effect of the Strychnos ligustrina (SLW) wood extracts and to analyze its phytochemicals. The SLW powder samples were macerated with 100% ethanol (E100), 75% ethanol (E75), 50% ethanol (E50), 25% ethanol (E25), and aqueous (A100). The extracts were analyzed by LCMS/MS, and its in-vitro antimalarial activity was tested with Plasmodium falciparum. The results showed that the extract yields of E100, E75, E50, E25, and A100 were 4.3, 5.2, 5.3, 4.7, and 3.6%, respectively. The antimalarial activities of the A100, E25, E50, and E75 extracts were classified as active with $IC_{50}$ values of 38.6, 42.6, 42.9, and $43.7{\mu}g/mL$, respectively. But, the antimalarial activity of the E100 extract was classified as slightly active with $IC_{50}$ values of $87.4{\mu}g/mL$. The dominant compounds contained in the extracts of A100, E25, E50, E75, and E100 was the alkaloid compound, namely brucine with relative concentrations of 24.96, 24.55, 21.33, 11.79, and 11.62%, respectively.

Antimalarial Activity and Cytotoxicity of Herb-medicine Against P. falciparum in vitro (전통적으로 말라리아 처방에 다용되는 한약재에 대한 항 말라리아 효능과 세포독서에 대한 연구)

  • Kim, Youn-Chul;Kim, Jong-Ho;Park, Hyun;Kim, Yong-Man;Kim, Min-Kyeoung;Jeon, Byung-Hun;Kim, Hye-Sook;Yun, Ki-Jung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.102-105
    • /
    • 2005
  • Eighteen methanol extracts of herb-medicine used for malarial and antipyretic therapies in Korea were assessed for their antimalarial activities. Eighteen extracts showed evident antimalarial activity with $EC_50$ values ranged from $2.8\;to\;110mg/m{\ell}$. Evodia fructus showed the antimalarial activity of $EC_50\;=\;4.1\;mg/m{\ell}$ and higher selective toxicity(>8) with no cytotocixity for mammalian cells. This indicated that Evodia fructus is potent for a new effective and safe antimalarial agent. The methanol extract of Physalli radix had also strongest antiplasmodial activity with $EC_50$ value of $2.8{\mu}g/m{\ell}$.

Augmentation of antioxidant system: Contribution to antimalarial activity of Clerodendrum violaceum leaf extract

  • Balogun, Elizabeth Abidemi;Zailani, Ahmed Hauwa;Adebayo, Joseph Oluwatope
    • CELLMED
    • /
    • v.4 no.4
    • /
    • pp.26.1-26.9
    • /
    • 2014
  • Reactive oxygen species are known to mediate various pathological conditions associated with malaria. In this study, the antioxidant potential of Clerodendrum violaceum leaf extracts, an indigenous antimalarial remedy, was evaluated. Total phenol, flavonoid, selenium, vitamins C and E contents of Clerodendrum violaceum leaf extracts were determined. The free radical scavenging activities of the extracts against DPPH, superoxide anion and hydrogen peroxide coupled with their reducing power were also evaluated in vitro. Moreover, responses of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in a rodent malaria model to a 4-day administration of Clerodendrum violaceum leaf extracts were also evaluated. The methanolic extract was found to contain the highest amounts of antioxidant compounds/element and also demonstrated the highest free radical scavenging activity in vitro. The results showed a significant decrease (p < 0.05) in SOD and CAT activities with a concurrent significant (p < 0.05) increase in GPx and GR activities in both erythrocytes and liver of untreated Plasmodium berghei NK65-infected animals compared to the uninfected animals. The extracts were able to significantly increase (p < 0.05) SOD and CAT activities and significantly reduce (p < 0.05) GPx and GR activities in both the liver and erythrocytes compared to those observed in the untreated infected animals. The results suggest the augmentation of the antioxidant system as one of the possible mechanisms by which Clerodendrum violaceum extract ameliorates secondary effects of malaria infection, alongside its antiplasmodial effect in subjects.

Peroxide Constituents in the Natural Product Research (천연물 연구에서의 Peroxide 성분)

  • Lee, Kang-Ro
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.3
    • /
    • pp.145-155
    • /
    • 1991
  • Peroxides in natural products have been recently received a considerable attention due to their various biological and pharmacological properties. Nearly 300 peroxides have been isolated and structually characterized from natural sources, mainly as constituents of Compositae and marine sponge, and occur randomly in about 10 other plant families. Among peroxides studied, sesquiterpene endoperoxide, quinghaosu, has been already clinically applied as a new antimalarial drug. Based on the peroxides reported, structural classification, natural distribution and biological and pharmacological activities are reviewed. Color reagent and spectroscopic identification of peroxide are also described.

  • PDF

Multi-Function of a New Bioactive Secondary Metabolite Derived from Endophytic Fungus Colletotrichum acutatum of Angelica sinensis

  • Ramy S. Yehia
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.806-822
    • /
    • 2023
  • In the current study we assessed a new crystallized compound, 5-(1-hydroxybutyl)-4-methoxy-3-methyl-2H-pyran-2-one (C-HMMP), from the endophytic fungus Colletotrichum acutatum residing in the medicinal plant Angelica sinensis for its in vitro antimicrobial, antibiofilm, antioxidant, antimalarial, and anti-proliferative properties. The promising compound was identified as C-HMMP through antimicrobial-guided fraction. The structure of C-HMMP was unambiguously confirmed by 2D NMR and HIRS spectroscopic analysis. Antimicrobial property testing of C-HMMP showed it to be effective against a variety of pathogenic bacteria and fungi with MICs ranging from 3.9 to 31.25 ㎍/ml. The compound displayed excellent antibiofilm activity against C. albicans, S. aureus, and K. pneumonia. Furthermore, the antimalarial and radical scavenging activities of C-HMMP were clearly dosedependent, with IC50 values of 0.15 and 131.2 ㎍/ml. The anti-proliferative activity of C-HMMP against the HepG-2, HeLa, and MCF-7 cell lines in vitro was investigated by MTT assay, revealing notable anti-proliferative activity with IC50 values of 114.1, 90, and 133.6 ㎍/ml, respectively. Moreover, CHMMP successfully targets topoisomerase I and demonstrated beneficial anti-mutagenicity in the Ames test against the reactive carcinogenic mutagen, 2-aminofluorene (2-AF). Finally, the compound inhibited the activity of α-glucosidase and α-amylase with IC50 values of 144.7 and 118.6 ㎍/ml, respectively. To the best of our knowledge, the identified compound C-HMMP was obtained for the first time from C. acutatum of A. sinensis, and this study demonstrated that C-HMMP has relevant biological significance and could provide better therapeutic targets against disease.

Comparative antiplasmodial activity, cytotoxicity, and phytochemical contents of Warburgia ugandensis stem bark against Aspilia africana wild and in vitro regenerated tissues

  • Denis Okello;Jeremiah Gathirwa;Alice Wanyoko;Richard Komakech;Yuseong Chung;Roggers Gang;Francis Omujal;Youngmin Kang
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.97-107
    • /
    • 2023
  • Malaria remains to be one of the most severe global public health concerns. Traditionally, Aspilia Africana and Warburgia ugandensis have been used to treat malaria in several African countries for millennia. In the current study, A. africana calli (AaC), A. africana in vitro roots (AaIR), A. africana wild leaf (AaWL), and W. ugandensis stem bark (WuSB) were dried and pulverized. Fourier transform near-infrared spectroscopy was used to analyze the powdered samples, while 80% ethanolic extracts of each sample were assayed for antiplasmodial activity (against Plasmodium falciparum strains DD2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive)) and cytotoxicity. WuSB showed the highest antiplasmodial activity (IC50 = 1.57 ± 0.210 ㎍/ml and 8.92 ± 0.365 ㎍/ml against P. falciparum 3D7 and DD2, respectively) and selectivity indices (43.90 ± 7.914 and 7.543 ± 0.051 for P. falciparum 3D7 and DD2, respectively). The highest total polyphenolic contents (total phenolic and flavonoid contents of 367.9 ± 3.55 mg GAE/g and 203.9 ± 1.43 mg RUE/g, respectively) were recorded for WuSB and the lowest were recorded for AaC. The antiplasmodial activities of the tested plant tissues correlated positively with total polyphenolic content. The high selectivity indices of WuSB justify its traditional applications in treating malaria and present it as a good candidate for discovering new antimalarial compounds. We recommend elicitation treatment for AaIR, which showed moderate antiplasmodial activity against P. falciparum DD2, to increase its secondary metabolite production for optimal antimalarial activity.

Review on the ethnomedicinal, phytochemical and pharmacological properties of Piper sarmentosum: scientific justification of its traditional use

  • Seyyedan, Atefeh;Yahya, Farhana;Kamarolzaman, Mohammad Fauzi Fahmi;Suhaili, Zarizal;Desa, Mohd Nasir Mohd;Khairi, Hussain Mohd;Somchit, Muhammad Nazrul;Fatimah, Corazon Abdullah;Teh, Lay Kek;Salleh, Mohd Zaki;Zakaria, Zainul Amiruddin
    • CELLMED
    • /
    • v.3 no.3
    • /
    • pp.19.1-19.32
    • /
    • 2013
  • Piper sarmentosum is a creeping herb belongs to the family of Piperaceae. It is locally known to the Malays as 'Pokok kadok' and can be found in different regions of South-East Asia including Malaysia. Ethnopharmacologically, various parts of the plant (e.g. leave, fruit and root) are widely used in Asian countries for centuries to treat different types of diseases and ailments such as hypertension, diabetes, joint aches, muscle pain, coughs, influenza, toothaches and rheumatism. Scientific findings also demonstrated different pharmacological actions of various parts of P. sarmentosum such as adulticidal, antitermite, antioxidant, antifungal, antituberclosis, antiplasmoid, antimalarial, hypoglycemia, antiinflammatory, antinoceptive, antipyretic, antibacterial, anticancer, antituberculosis, antiangiogenesis, antimicrobial, antifeedant and cytotoxic activities. Different types of phytochemical constituents have been successfully identified and isolated from various parts of P. sarmentosum. Therefore, the information related to the botany, ethnomedicinal uses, phytochemical constituents and pharmacological activities of P. sarmentosum were reviewed here.