• Title/Summary/Keyword: antifungal susceptibility

Search Result 49, Processing Time 0.032 seconds

The Antifungal Activities of some 6-[N-(halophenyl)amino]-7-Chloro-5,8-Quinolinediones against Candida Species

  • Ryu, Chung-Kyu;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.17 no.6
    • /
    • pp.483-486
    • /
    • 1994
  • A series of 6-[N-(halophenyl)amino]-7-chloro-5, 8-quinolinedione derivatives 1-10 were tested for antifungal susceptibilities, in vitro, aginst pathogenic Candida species such as C. ablbicans, C glabrata, C. krusei, C. parapsilosis and C. tropicalis. The MICs were determined by the standard macrodilution techniques, according to the NCCLS 1992 guidelines. The 6-[N-(halo-standard macrodilution techniques, according to the NCCLS 1992 gidelines. The 6-[N-(halo-phenyl)amino]-7-chloro-5, 8-quinolinedione derivatives showed generally potent antifungal activities against pathogenic Candida species. Among them, derivative 1, 2, 5, and 7 showed more potent antifungal activities than kietoconazole. All derivatives 1-10 had specially potent activities against C. torpicalis. Derivative 1 and 2 containing 9N-3, 4-dihalo-phenyl)amino moiety exhibited the potent antifugal activities. Derivative 2 with (3, 4-dichlorophenyl)amino substitutent was the most effetive in preventing the growth of Candida species at MICs 4.mu.g/ml respectively.

  • PDF

Trends of Antifungal Agent Susceptibility of Candida Strains Isolated from Blood Cultures in 2009~2018 (2009~2018년 혈액배양으로부터 분리된 Candida 균종의 항진균제 감수성의 경향)

  • Hwang, Yu-Yean;Kang, On-Kyun;Park, Chang-Eun;Lee, Moo-Sik;Kim, Young-Kwon;Huh, Hee-Jae;Lee, Nam-Yong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.133-141
    • /
    • 2022
  • Candida is one of the most common causes of bloodstream infections and a leading cause of morbidity and mortality among hospitalized patients. The purpose of this study was to provide important information for formulating empirical treatment plans for candidemia by investigating the antifungal resistance rate of Candida. Among the Candida strains (973 cases) isolated from blood culture tests at the S hospital in 2009~2018, 4.7% (N=44) comprising the Candida spp. (932 strains) showed resistance to fluconazole. The resistant strains included C. albicans, C. parapsilosis, C. tropicalis, and C. glabrata. In addition Candida spp. (947 strains) showed resistance to amphotericin B (N=6, 0.6%), flucytosine (N=23, 2.4%) and voriconazole (N=24, 3.1%). C. albicans was resistant to fluconazole (N=23, 6.9%) and voriconazole (N=21, 6.0%), The statistical analysis showed that C. albicans and non-albicans Candida species were resistant to fluconazole (P=0.039) and voriconazole (P<0.001). A monitoring system to understand the rate of candidiasis infections in a hospital setting is required. It is also important to make the right choice of the antifungal agent based on drug susceptibility patterns. Therefore, an infection surveillance policy that tracks Candida resistance through regular antifungal susceptibility tests is necessary.

Antifungal Susceptibility Tests and the cyp51 Mutant Strains among Clinical Aspergillus fumigatus Isolates from Korean Multicenters

  • Won, Eun Jeong;Joo, Min Young;Lee, Dain;Kim, Mi-Na;Park, Yeon-Joon;Kim, Soo Hyun;Shin, Myung Geun;Shin, Jong Hee
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.148-152
    • /
    • 2020
  • We investigated the antifungal susceptibilities and the cyp51 mutant strains among Aspergillus fumigatus clinical isolates obtained from 10 university hospitals in Korea. Of the 84 isolates examined, two itraconazole-resistant isolates were found with no amino acid substitution in the cyp51A/cyp51B genes. However, 19 (23.2%) azole-susceptible isolates harbored amino acid substitutions: Nine isolates harbored one to five mutations in cyp51A with high polymorphism, and 11 isolates exhibited the same Q42L mutation in cyp51B. Overall, a low azole resistance rate and high frequency of cyp51A/cyp51B amino acid substitutions were observed in the azole-susceptible A. fumigatus isolates in Korea.

Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

  • Raman, N.;Sakthivel, A.;Rajasekaran, K.
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.150-153
    • /
    • 2007
  • New $N_2O_2$ donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and $^1H$ NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of $10{\sim}31{\mu}g/ml$.

Essential Oil Compounds from Agastache rugosa as Antifungal Agents Against Trichophyton Species

  • Shin, Seung-Won
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.295-299
    • /
    • 2004
  • The antifungal activities of the essential oil from Agastache rugosa and its main component, estragole, combined with ketoconazole, one of the azole antibiotics commonly used to treat infections caused by Trichophyton species, were evaluated in this study. The combined effects were measured by the checkerboard microtiter and the disk diffusion tests, against T. erinacei, T. mentagrophytes, T. rubrum, T. schoenleinii and T. soudanense. Susceptibility of the five Trichophyton species to the oil alone, or ketoconazole alone, differed distinctly. The fractional inhibitory concentration indices (FICI) of ketoconazole combined with estragole or A. rugosa essential oil, against the tested Trichophyton species, were between 0.05 and 0.27, indicating synergistic effects. These drug combinations exhibited the most significant synergism against T. mentagrophytes, with FICIs of 0.05 and 0.09 for estragole and the essential oil fraction from A. rugosa, respectively. Isobolograms based on the data from checkerboard titer tests also indicated significant synergism between ketoconazole and the Agastache oil fraction or estragole, against the Trichophyton species evaluated. Trichophyton susceptibility to ketoconazole was significantly improved by combination with the Agastache rugosa oil fraction or its main component, estragole.

Influence of the Hydrophobic Amino Acids in the N- and C-Terminal Regions of Pleurocidin on Antifungal Activity

  • Lee, June-Young;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1192-1195
    • /
    • 2010
  • To investigate the influence of the N- or C-terminal regions of pleurocidin (Ple) peptide on antifungal activity, four analogs partially truncated in the N- or C-terminal regions were designed and synthesized. Circular dichroism (CD) spectroscopy demonstrated that all the analogs maintained an alpha-helical structure. The antifungal susceptibility testing also showed that the analogs exhibited antifungal activities against human fungal pathogens, without hemolytic effects against human erythrocytes. The result further indicated that the analogs had discrepant antifungal activities [Ple>Ple (1-22)>Ple (4-25)>Ple (1- 19)>Ple (7-25)] and that N-terminal deletion affected the activities much more than C-terminal deletion. Hydrophobicity [Ple>Ple (1-22)>Ple (4-25)>Ple (1-19)> Ple (7-25)] was thought to have been one of the consistent factors that influenced these activity patterns, rather than the other primary factors like the helicity [Ple>Ple (4-25) >Ple (1-22)>Ple (1-19)>Ple (7-25)] or the net charge [Ple=Ple (4-25)=Ple (7-25)>Ple (1-22)=Ple (1-19)] of the peptides. In conclusion, the hydrophobic amino acids in the N-terminal region of Ple is more crucial for antifungal activity than those in the C-terminal region.

Synthesis and Antifungal Evaluation of 6-(N-arylamino)-7-methylthio-5,8-quinolinediones

  • Kim, Chung-Kyu;Choi, Jung-Ah;Kim, Sung-Hee
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.440-444
    • /
    • 1998
  • A series of 6-(N-arylamino)-7-methylthio-5,8-quinolinedione derivatives 4a-4l was newly synthesized for the evaluation of antifungal activity. 6-(N-Arylamino)-7-methylthio-5,8-quinolinediones were prepared by regioselective nucleophilic substitution of 6,7-dichloro-5,8-quinolinediones with arylamines in the presence of $Ce^{3+}$, and $Na_2$S/dimethylsulfate. The MIC values of 4a-4l were determined for antifungal susceptibility in vitro against Candida species by agar streak method. The derivatives 4a-4l had generally potent antifungal activities against all human pathogenic fungi. Especially they had the most potent activity against C. krusei at 12.5-0.8 $\mu\textrm{g}$/ml. Compounds 4d, 4g, 4h, 4j and 4k had more potent antifungal activities than fluconazole. Compounds 4g and 4h completely inhibited the fungal growth at 0.8-6.3 $\mu\textrm{g}$/ml against all Candida species, while fluconazole inhibited the growth at 25 $\mu\textrm{g}$/ml. The compounds such as 4g and 4h containing an N-(4-bromo-2-methylphenyl)- or N-(4-bromo-3methylphenyl)amino substituent exhibited the most potent antifungal activities.

  • PDF

Drug susceptibility of bacteria and M pachydermatis isolated from canine external ear canals (개 외이도에서 분리한 세균 및 M pachydermatis의 약제감수성에 대하여)

  • Kim, Ki-hyang;Choi, Won-phil;Yeo, Sang-geon
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.560-565
    • /
    • 1999
  • The present work was conducted to investigate the drug susceptibility of microorganisms isolated from canine external ear canals. Antifungal susceptibility test of M pachydermatis (17 strains) was perfomed by agar dilution method, using 11 antifungal drugs including amphotericin B(A), nystatin(N), pimaricin(P), griseofulvin(G), bifonazole(B), clotrimazole(C), miconazole(M), econazole(E), ketoconazole(K), tolnaftate(T), 5-fluorocytosine(F). All isolates were highly sensitive to K, M, T(geometric mean MIC ; GM $MIC{\leq}0.16{\mu}g/ml$) but they weren't sensitive to P, F and G(GM $MIC{\geq}92.37{\mu}g/ml{\sim}{\geq}128{\mu}g/ml$). Antibacterial susceptibility test against 119 isolates of bacteria was performed by agar dilution method, using 9 antibacterial drugs including erythromycin(ET), chloramphenicol(CP), gentamycin(G), vancomycin(V), ampicillin(AP), amoxacillin(AX), chlortetracycline(CT), ciprofloxacin(CF), enrofloxacin(EF). All isolates of Staphylococcus spp(101 strains) were highly sensitive to EF, CF, G(GM MIC $0.33{\sim}1.47{\mu}g/ml$). In other gram positive cocci(4 strains), they were highly sensitive to EF, CF, V(GM MIC $1{\sim}4.76{\mu}g/ml$) and CT(GM MIC 1 UFL unit/ml). In gram positive rods(13 strains), they were highly sensitive to EF, CF, G(GM $MIC{\leq}0.19{\sim}1{\mu}g/ml$). In Pseudomonas aeruginosa(1 strain), it was highly sensitive to AX, EF, ET, CF(GM MIC $0.06{\sim}1{\mu}g/ml$) and CT(GM MIC 1 UFL unit/ml). All isolates weren't sensitive to AP(GM MIC 16~>$32{\mu}g/ml$).

  • PDF

Antifungal Activity of Glycycoumarin to Candida albicans (Glycycoumarin 감초성분의 항진균효과)

  • Lee, Jue-Hee;Lee, Young-Mi;Han, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.234-239
    • /
    • 2011
  • Glycycoumarin, a 3-arylcoumarine isolated from Glycyrrhizae radix (a family of Leguminosae), is reported to have anti-bacterial activity. However, its antifungal activity is still unknown. In this present study, the antifungal activity of glycycoumarin (GLM) against Candida albicans, a polymorphic fungus was investigated. Possible mechanism such as blocking of the hyphal induction was also analyzed. By the in-vitro susceptibility analysis, GLM showed anticandidal activity, resulting in an almost complete inhibition of the fungal growth at a concentration of 320 ${\mu}g/ml$, which was equivalent to the efficacy of fluconazole at the same dose. In the murine model of disseminated candidiasis GLM enhanced resistance of mice against the disseminated disease (P<0.05), resulting in 60% protection of GLM-treated mice group during a period of 21-day observation. As for its mechanism of the antifungal activity, GLM blocked hyphal production, one of the important of virulence factors by the fungus, from the yeast form of C. albicans (P<0.01). These data indicate that GLM may contribute to the perspectives that focus on the development of a novel agent with antifungal activity specific for C. albicans infection.

A Novel Antifungal Analog Peptide Derived from Protaetiamycine

  • Lee, Juneyoung;Hong, Hyun Joo;Kim, Jin-Kyoung;Hwang, Jae-Sam;Kim, Yangmee;Lee, Dong Gun
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.473-477
    • /
    • 2009
  • Previously, the 9-mer analog peptides, 9Pbw2 and 9Pbw4, were designed based on a defensin-like peptide, protaetiamycine isolated from Protaetia brevitarsis. In this study, antifungal effects of the analog peptides were investigated. The antifungal susceptibility testing exhibited that 9Pbw4 contained more potent antifungal activities than 9Pbw2. A PI influx assay confirmed the effects of the analog peptides and demonstrated that the peptides exerted their activity by a membrane-active mechanism, in an energy-independent manner. As the noteworthy potency of 9Pbw4, the mechanism(s) of 9Pbw4 were further investigated. The membrane studies, using rhodamine-labeled giant unilamellar vesicle (GUV) and fluorescein isothiocyanate (FITC)-dextran loaded liposome, suggested that the membrane-active mechanism of 9Pbw4 could have originated from the pore-forming action and the radii of pores was presumed to be anywhere from 1.8 nm to 3.3 nm. These results were confirmed by 3D-flow cytometric contour-plot analysis. The present study suggests a potential of 9Pbw4 as a novel antifungal peptide.