• Title/Summary/Keyword: antibody monoclonal

Search Result 852, Processing Time 0.025 seconds

Monoclonal antibodies against structural proteins of bovine viral diarrhea virus (소 설사병 바이러스 구조단백에 대한 단크론항체 성상에 대한 연구)

  • Kweon, Chang-hee;Zee, Yuan Chun;Woo, Hee-jong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 1992
  • Monoclonal antibodies against structural proteins of bovine viral diarrhea virus(BVDV) were derived by classical hybridoma techniques. These antibodies were characterized by serum neutralization, immunoblotting and immunoprecipitation. The neutralizing monoclonal antibody reacted with the 56kd to 54kd(M.W.) viral protein in western blotting and immunoprecipitation analysis. Although there was no neutralizing activity, another monoclanal antibody reacted with the 45kd protein by immunoprecipitation and with both the 45kd and 36kd proteins in immunoblotting analysis. respectively. Densitometer scanning of purified BVDV and the immunopreipitation of whole virus particles with neutralizing monoclonal antibody revealed the presence of more than twelve viral polypeptides. Although no possible precursor form of protein was identified with the neutralizing monoclonal antibody. the presence of intact virion was detected in the infected cell supernatant immediatelty after pulse labeling, indicating rapid translational processing as well as packaging of the virus. The partial peptide mapping of 45kd and 36kd proteins with Staphylococcus aureus V 8 protease showed that these two proteins are related.

  • PDF

Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex

  • Park, Byoung Kwon;Maharjan, Sony;Lee, Su In;Kim, Jinsoo;Bae, Joon-Yong;Park, Man-Seong;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.397-402
    • /
    • 2019
  • Middle East respiratory syndrome coronavirus (MERS-CoV) uses the spike (S) glycoprotein to recognize and enter target cells. In this study, we selected two epitope peptide sequences within the receptor binding domain (RBD) of the MERS-CoV S protein. We used a complex consisting of the epitope peptide of the MERS-CoV S protein and CpG-DNA encapsulated in liposome complex to immunize mice, and produced the monoclonal antibodies 506-2G10G5 and 492-1G10E4E2. The western blotting data showed that both monoclonal antibodies detected the S protein and immunoprecipitated the native form of the S protein. Indirect immunofluorescence and confocal analysis suggested strong reactivity of the antibodies towards the S protein of MERS-CoV virus infected Vero cells. Furthermore, the 506-2G10G5 monoclonal antibody significantly reduced plaque formation in MERS-CoV infected Vero cells compared to normal mouse IgG and 492-1G10E4E2. Thus, we successfully produced a monoclonal antibody directed against the RBD domain of the S protein which could be used in the development of diagnostics and therapeutic applications in the future.

옥수수중 Deoxynivalenol의 검출을 위한 효소면역측정법의 개발

  • Lee, Hyang-Burm;Shon, Dong-Hwa;Kosaka, Kunio;Ueno, Yoshio
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.414-419
    • /
    • 1997
  • In order to develop an enzyme-linked immunosorbent assay (ELISA) for deoxynivalenol (DON) in com, we produced a specific monocl- onal antibody and established ELISA conditions. After the spleen cells from mice immunized with DON-bovine serum albumin conjugate were fused with S$_{p}$2/0 myeloma cells, a hybridoma cell 3G7 producing anti-DON antibody was screened by ELISA. From the standard curve of competitive direct ELISA (cdELISA) using 3G7 monoclonal antibody and DON-HRP conjugate, the detection range of DON showed 3-3,000 ng/ml (ppb). The monoclonal antibody showed some cross-reactivities against DON analogues such as 15 acetyl-DON (110%), nivalenol (5.0%), 3 acetyl-DON (1.7%), fusarenon-x (0.72%), and T-2 (0.59%). When the cdELISA was applied to the spiked coms after extracting with 60% methanol and diluting 5- fold with washing buffer, the assay recoveries of DON were 313, 163, 106, and 88.9% (av., 168%) in the levels of 200, 600, 2,000, and 6,000ng/g, respectively. For the quantitation of DON in coms, 30 samples kept under two different storage conditions of cold and room temperature were assayed by cdELISA. The mean detection concentrations were 595 (detection range, 0-2,750) and 2,448 (detection range, 0-4,500) ppb, respectively.

  • PDF

Cloning and Characterization of a Single Chain Antibody to Glucose Oxidase from a Murine Hybridoma

  • Sellrie, Frank;Schenk, Jorg A.;Behrsing, Olaf;Drechsel, Oliver;Micheel, Burkhard
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.875-880
    • /
    • 2007
  • Glucose oxidase (GOD) is an oxidoreductase catalyzing the reaction of glucose and oxygen to peroxide and gluconolacton (EC 1.1.3.4.). GOD is a widely used enzyme in biotechnology. Therefore the production of monoclonal antibodies and antibody fragments to GOD are of interest in bioanalytics and even tumor therapy. We describe here the generation of a panel of monoclonal antibodies to native and heat inactivated GOD. One of the hybridomas, E13BC8, was used for cloning of a single chain antibody(scFv). This scFv was expressed in Escherichia coli XL1-blue with the help of the vector system pOPE101. The scFv was isolated from the periplasmic fraction and detected by western blotting. It reacts specifically with soluble active GOD but does not recognize denatured GOD adsorbed to the solid phase. The same binding properties were also found for the monoclonal antibody E13BC8.

A possible role of lipopolysaccharides in the prevention of lysosome0symbiosome fusion as studied by microinjection of an anti-LPS monoclonal antibody (리소솜과 공생낭의 융합저해에서의 Lipopolysaccharide의 역할에 관한 연구)

  • Choi, Eui-Yul
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.280-284
    • /
    • 1994
  • Lack of lysosomal fusion with symbiosomes in symbiont-bearing Amoeba proteus may be due either to the presence of a component in the symbiosome membrane or to the absence of a component needed in the fusion process. Using monoclonal antibody as a probe, lipopolysaccharides were identified as symbiosome-membrane components contributed by symbionts and were found to be exposed on the cytoplasmic side of the membrane. In order to test whether lipopolysaccharides may play a role in the prevention of lysosome-symbiosome fusion, the antilipopolysaccharides antibody was microinjected and processed for double immunostaining in conjuction with anti-lysosome antibody as a lysosome-fusion indicator. Microinjection of the anti-LPS antibody caused symbiosomes to fuse with lysosomes, suggesting that X-bacterial lipopolysaccharides could be 'fusion-preventing' factors.

  • PDF

Characterization of KI-24, a Novel Murine Monoclonal Antibody with Specific Reactivity for the Human Immunodeficiency Virus-1 p24 Protein

  • Shin, Song-Yub;Park, Jung-Hyun;Lee, Myung-Kyu;Jang, So-Youn;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.92-95
    • /
    • 2000
  • The HIV-1 p24(202-221) sequence ETINNEEEWDRVHPV HAGP contains a B-cell epitope with the earliest immune response and the highest antibody titer against anti-mouse sera obtained by immunization with p24 antigens. A novel mouse monoclonal antibody (mAb) was generated against the immunodominant B-cell epitope of the HIV-1 p24 capsid protein, p24(202-221). BALB/c mice were immunized with the four branched multiple antigenic peptide (MAP) containing the HIV-1p24(202-221) sequence, and antibody-secreting hybridoma were produced by fusion of mouse splenocytes with P3X63Ag8.653, mouse myeloma cells. One clone which produced the antigen-specific mAb named KI-24 (Isotype IgG1, light chain: ${\kappa}$) was identified. mAb KI-24 was highly specific for both the p24(202-221) and p24 proteins when analyzed by ELISA and Western blotting. Since p24(202-221) also contains a cytotoxic T-lymphocyte epitope, this specfic peptide epitope and the monoclonal antibody with specific reactivity against the p24 protein and p24(202-221) can be used in peptide vaccine development and p24 antigen detection from HIV patients.

  • PDF

Monoclonal Antibody Refolding and Assembly: Protein Disulfide Isomerase Reaction Kinetics

  • Park, Sun-Ho;Ryu, Dewey D.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • The protein disulfide isomerase (PDI) reaction kinetics has been studied to evaluate its effect on the monoclonal antibody (Mab) refolding and assembly which accompanies disulfide bend formation. The MAb in vitro assembly experiments showed that the assembly rate of heavy and light chains can be greatly enhanced in the presence of PDI as compared to the rate of assembly obtained by the air-oxidation. The reassembly patterns of MAb in-termediates were identical for both with and without PDI, suggesting that the PDI does not determine the MAb assembly pathway, but rather facilitates the rate of MAb assembly by promoting PDI catalyzed disulfide bond formation. The effect of growth rate on PDI activities for MAb production has also been examined by using continuous culture system. The specific MAb productivity of hybridoma cells decreased as the growth rate increased. However, PDI activities were nearly constant fur a wide range of growth rates except very high growth rate, indicating that no direct correlation between PDI activity and specific MAb productivity exists.

Monoclonal Antibody Refolding and Assembly: Protein Disulfide Isomerase Reaction Kinetics

  • Park, Sun-Ho;Ryu, Dewey D.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 1996
  • The protein disulfide isomerase(PDI) reaction kinetics has been studied to evaluate its effect on the monoclonal antibody(MAb) refolding and assembly which accompanies disulfide bond formation The MAb in vitro assembly experiments showed that the assembly rate of heavy and light chains can be greatly enhanced in the presence of PDI as compared to the rate of assembly obtained by the air-oxidation. The reassembly patterns of MAb intermediates were identical for both with and without PDI, suggesting that the PDI does not determine the MAb assembly pathway, but rather facilitates the rate of MAb assembly by promoting PDI catalyzed disulfide bond formation. The effect of growth rate on PDI activities for MAb production has also been examined by using continuous culture system. The specific MAb productivity of hybridoma cells decreased as the growth rate increased. However, PDI activities were nearly constant for a wide range of growth rates except very high growth rate, indicating that no direct correlation between PDI activity and specific MAb productivity exists.

  • PDF

Ammonium Ion Effects and Its In Situ Removal by Using Immobilized Adsorbent in Hybridoma Cell Culture (하이브리도마 세포배양에서 암모늄 이온의 영향 및 고정화 흡착제에 의한 암모늄 이온의 동시제거)

  • 정연호;이해익
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.329-339
    • /
    • 1996
  • The effects of ammonium ion on cell growth kinetics, monoclonal antibody productivity, and cell metabolism of hybridoma cells were investigated. The mouse-mouse hybridoma cell line VlIIH-8 producing mouse IgG2a was used as a model system. Ammonium ion showed an inhibitory effect on cell growth and monoclonal antibody production. New immobilized adsorbents were developed for the reduction of the inhibitory effect of ammonium ion. The ammonium ion selective zeolite, Phillipsite-Gismondine was entrapped in calcium alginate bead or in dialysis membrane and applied to the hybridoma cell culture system for the in situ removal of ammonium ion from culture media. The effects of ammonium the both serum supplemented and serum free media on the cell growth were studied by applying immobilized adsorbents of calcium alginate bead type. The results demonstrated a substantial enhancement in cell growth. Applying immobilized adsorbents of dialysis membrane type to serum supplemented media also resulted in the stimulation of cell growth, cell viability and monoclonal antibody production.

  • PDF

Effect of Gelatin on the Stability of Heavy Chain Monoclonal Antibody Production from Plant Suspension Cultures

  • Ryland, J.;Robert, P.;Michael, Linzmaier;Lee, James M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.449-454
    • /
    • 2000
  • The heavy chain monoclonal antibody (HC MAb) was produced in suspension cultures of genetically modified Nicotiana tabacum. The HC MAb secreted to the medium was unstable due to unfavorable interactions in the plant cell medium. The addition of gelatin (5g/l) stabilized the extracellular HC MAb and increased its production 10-fold. A kinetic model was developed describing the interaction between the secretedprotein and the stabilizer. The model accounted for the inactivation of the protein by simple aggregation and general instability. It was assumed that the secreted protein and the stabilizer form a stable complex. Culturing the cells semicontinuously could further increase the productivity of HC MAb.

  • PDF