DOI QR코드

DOI QR Code

Cloning and Characterization of a Single Chain Antibody to Glucose Oxidase from a Murine Hybridoma

  • Sellrie, Frank (Department of Biotechnology, Institute of Biochemistry and Biology, University of Potsdam) ;
  • Schenk, Jorg A. (Department of Biotechnology, Institute of Biochemistry and Biology, University of Potsdam) ;
  • Behrsing, Olaf (Department of Biotechnology, Institute of Biochemistry and Biology, University of Potsdam) ;
  • Drechsel, Oliver (Department of Biotechnology, Institute of Biochemistry and Biology, University of Potsdam) ;
  • Micheel, Burkhard (Department of Biotechnology, Institute of Biochemistry and Biology, University of Potsdam)
  • Published : 2007.11.30

Abstract

Glucose oxidase (GOD) is an oxidoreductase catalyzing the reaction of glucose and oxygen to peroxide and gluconolacton (EC 1.1.3.4.). GOD is a widely used enzyme in biotechnology. Therefore the production of monoclonal antibodies and antibody fragments to GOD are of interest in bioanalytics and even tumor therapy. We describe here the generation of a panel of monoclonal antibodies to native and heat inactivated GOD. One of the hybridomas, E13BC8, was used for cloning of a single chain antibody(scFv). This scFv was expressed in Escherichia coli XL1-blue with the help of the vector system pOPE101. The scFv was isolated from the periplasmic fraction and detected by western blotting. It reacts specifically with soluble active GOD but does not recognize denatured GOD adsorbed to the solid phase. The same binding properties were also found for the monoclonal antibody E13BC8.

Keywords

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Ascione, A., Flego, M., Zamboni, S., De Cinti, E., Dupuis, M. L. and Cianfriglia, M. (2004) Isolation and characterization of the human monoclonal antibodies C10 in single-chain fragment variable (scFv) format to glucose oxidase from Aspergillus niger. Hybrid. Hybridomics 23, 380-384. https://doi.org/10.1089/hyb.2004.23.380
  3. Bang, L. M., Buntting, C. and Molan, P. (2003) The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. J. Altern. Complement. Med. 9, 267-273. https://doi.org/10.1089/10755530360623383
  4. Behrsing, O., Kaiser, G., Karawajew, L. and Micheel, B. (1992) Bispecific IgA/IgM antibodies and their use in enzyme immunoassay. J. Immunol. Meth. 156, 69-77. https://doi.org/10.1016/0022-1759(92)90012-I
  5. Bergholz, A., Heymann, S., Schenk, J. A. and Freytag, J. C. (2001) Biological sequences integrated: a relational database approach. Acta Biotheor. 49, 145-159. https://doi.org/10.1023/A:1011958524279
  6. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000) The protein data bank. Nucleic Acids Res. 28, 235-242. https://doi.org/10.1093/nar/28.1.235
  7. Bhat, T. N., Bentley, G. A., Fischmann, T. O., Boulot, G. and Poljak, R. J. (1990) Small rearrangements in structures of Fv and Fab fragments of antibody D1.3 on antigen binding. Nature 347, 483-485. https://doi.org/10.1038/347483a0
  8. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., Lee, T., Pope, S. H., Riordan, G. S. and Whitlow, M. (1988) Single-chain antigen-binding proteins. Science 242, 423-426. https://doi.org/10.1126/science.3140379
  9. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., Martin, M. J., Michoud, K., O'Donovan, C., Phan, I., Pilbout, S. and Schneider, M. (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365-370. https://doi.org/10.1093/nar/gkg095
  10. Breitling, F. and Little, M. (1986) Carboxy-terminal regions on the surface of tubulin and microtubules. Epitope locations of YOL1/ 34, DM1A and DM1B. J. Mol. Biol. 189, 367-370. https://doi.org/10.1016/0022-2836(86)90517-6
  11. Chan, S., Gabra, H., Hill, F., Evan, G. and Sikora, K. (1987) Tumour marker related to the c-myc oncogene product. Mol. Cell. Probes 1, 73-82. https://doi.org/10.1016/0890-8508(87)90008-9
  12. Coulthard, C. E., Michaelis, R., Short, W. F., Sykes, G., Skrimshire, G. E., Standfast, A. F., Birkinshaw, J. H. and Raistrick, H. (1945) Notatin: an anti-bacterial glucose-aerodehydrogenase from Penicillium notatum Westling and Penicillium resticulosum sp. nov. Biochem. J. 39, 24-36. https://doi.org/10.1042/bj0390024
  13. Hoogenboom, H. R. (2002) Overview of antibody phage-display technology and its applications. Methods Mol. Biol. 178, 1-37.
  14. Dubel, S., Breitling, F., Kontermann, R., Schmidt, T., Skerra, A. and Little, M. (1995) Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (scFv). J. Immunol. Meth. 178, 201-209. https://doi.org/10.1016/0022-1759(94)00257-W
  15. Hust, M. and Dubel, S. (2004) Mating antibody phage display with proteomics. Trends Biotechnol. 22, 8-14. https://doi.org/10.1016/j.tibtech.2003.10.011
  16. Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M. S., Novotny, J., Margolies, M. N., Ridge, R. J., Bruccoleri, R. E., Haber, E., Crea, R. and Oppermann, H. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879-5883. https://doi.org/10.1073/pnas.85.16.5879
  17. Jan, U. and Husain, Q. (2004) Preparation of a highly stable, very active and high-yield multilayered assembly of glucose oxidase using carbohydrate-specific polyclonal antibodies. Biotechnol. Appl. Biochem. 39, 233-239. https://doi.org/10.1042/BA20030092
  18. Kabat, E. A., Wu, T. T., Reid-Miller, M., Perry, H. M., Gottesmann, K. S. and Foeller, C. (1991) Sequences of Proteins of Immunological Interest, 5th Ed, US Department of Health and Human Services, Public Health Services, National Institute of Health, Bethesda, USA.
  19. Karmali, A. and Oliveira, P. (1999) Glucose 1- and 2-oxidases from fungal strains: isolation and production of monoclonal antibodies. J. Biotechnol. 69, 151-162. https://doi.org/10.1016/S0168-1656(99)00043-7
  20. Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495-497. https://doi.org/10.1038/256495a0
  21. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  22. Loffler, A., Kufer, P., Lutterbuse, R., Zettl, F., Daniel, P. T., Schwenkenbecher, J. M., Riethmuller, G., Dorken, B. and Bargou, R. C. (2000) A recombinant bispecific single-chain antibody, CD19 ${\times}$ CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95, 2098-2103.
  23. Martin, A. C. (1996) Accessing the Kabat Antibody Sequence Database by Computer. Proteins 25, 130-133. https://doi.org/10.1002/(SICI)1097-0134(199605)25:1<130::AID-PROT11>3.3.CO;2-Y
  24. Micheel, B., Heymann, S., Scharte, G., Bottger, V., Vogel, F., Dubel, S., Breitling, F., Little, M. and Behrsing, O. (1994) Production of monoclonal antibodies against epitopes of the main coat protein of filamentous fd phages. J. Immunol. Methods 171, 103-109. https://doi.org/10.1016/0022-1759(94)90233-X
  25. Ng, P. P., Dela Cruz, J. S., Sorour, D. N., Stinebaugh, J. M., Shin, S. U., Shin, D. S., Morrison, S. L. and Penichet, M. L. (2002) An anti-transferrin receptor-avidin fusion protein exhibits both strong proapoptotic activity and the ability to deliver various molecules into cancer cells. Proc. Natl. Acad. Sci. USA 99, 10706-10711. https://doi.org/10.1073/pnas.162362999
  26. Pan, K., Wang, H., Zhang, H. B., Liu, H. W., Lei, H. T., Huang, L. and Sun, Y. M. (2006) Production and characterization of single chain Fv directed against beta2-agonist clenbuterol. J. Agric. Food Chem. 54, 6654-6659. https://doi.org/10.1021/jf060898x
  27. Potter, H. (1988) Electroporation in biology: methods, applications, and instrumentation. Anal. Biochem. 174, 361-373. https://doi.org/10.1016/0003-2697(88)90035-8
  28. Prasad, L., Vandonselaar, M., Lee, J. S. and Delbaere, L. T. (1988) Structure determination of a monoclonal Fab fragment specific for histidine-containing protein of the phosphoenolpyruvate: sugar phosphotransferase system of Escherichia coli. J. Biol. Chem. 263, 2571-2574.
  29. Ray, S. and Banik, A. K. (1999) Effect of ammonium and nitrate ratio on glucose oxidase activity during gluconic acid fermentation by a mutant strain of Aspergillus niger. Indian J. Exp. Biol. 37, 391-395.
  30. Rohde, M., Schenk, J. A., Heymann, S., Behrsing, O., Scharte, G., Kempter, G., Woller, J., Höhne, W. E., Warsinke, A. and Micheel, B. (1998) Production and characterization of monoclonal antibodies against urea derivatives. Appl. Biochem. Biotechnol. 75, 129-137. https://doi.org/10.1007/BF02787713
  31. Samoszuk, M. and Yang, Q. B. (1994) Effects of interleukin 4 on production of IgE monoclonal antibodies directed against glucose oxidase. Hybridoma 13, 437-439. https://doi.org/10.1089/hyb.1994.13.437
  32. Schenk, J. A., Hillebrand, T., Heymann, S., Peters, L. E., Mazaheri, R., Micheel, B. and Bendzko, P. (1995) Amplification of immunoglobulin Fv-fragment-genes from RNA. Biotech. Prod. Int. 7, 30.
  33. Schenk, J. A., Matyssek, F. and Micheel, B. (2004) Interleukin 4 increases the antibody response against Rubisco in mice. In Vivo 18, 649-652.
  34. Schmiedl, A., Breitling, F., Winter, C., Queitsch, I. and Dubel, S. (2000) Effect of engineered Cysteines on yield, solubility and activity in various recombinant antibody formats expressed in E. Coli. J. Immunol. Meth. 242, 101-114. https://doi.org/10.1016/S0022-1759(00)00243-X
  35. Skerra, A. and Pluckthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038-1041. https://doi.org/10.1126/science.3285470
  36. Suffin, S. C., Muck, K. B., Young, J. C., Lewin, K. and Porter, D. D. (1979) Improvement of the glucose oxidase immunoenzyme technic. Use of a tetrazolium whose formazan is stable without heavey metal chelation. Am. J. Clin. Pathol. 71, 492-496 https://doi.org/10.1093/ajcp/71.5.492
  37. Toleikis, L., Broders, O. and Dubel, S. (2004) Cloning single-chain antibody fragments (scFv) from hybridoma cells. Methods Mol. Med. 94, 447-458
  38. Wohlfahrt, G., Witt, S., Hendle, J., Schomburg, D., Kalisz, H. M. and Hecht, H. J. (1999) 1.8 and 1.9 A resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallogr. D Biol. Crystallogr. 55, 969-977. https://doi.org/10.1107/S0907444999003431

Cited by

  1. Cloning Murine Antibody V-genes with Non-degenerate Primers and Conversion to a Recombinant Antibody Format vol.33, pp.6, 2014, https://doi.org/10.1089/mab.2014.0044
  2. Production and characterization of single-chain antibody (scFv) against 3ABC non-structural protein in Escherichia coli for sero-diagnosis of Foot and Mouth Disease virus vol.42, pp.6, 2014, https://doi.org/10.1016/j.biologicals.2014.08.005
  3. Production and Characterization of a Panel of Monoclonal Antibodies Against Native Human Cellular Prion Protein vol.28, pp.1, 2009, https://doi.org/10.1089/hyb.2008.0067
  4. Production of anti-amoxicillin ScFv antibody and simulation studying its molecular recognition mechanism for penicillins vol.51, pp.11, 2016, https://doi.org/10.1080/03601234.2016.1198639
  5. Production and Directional Evolution of Antisarafloxacin ScFv Antibody for Immunoassay of Fluoroquinolones in Milk vol.64, pp.42, 2016, https://doi.org/10.1021/acs.jafc.6b03356