• Title/Summary/Keyword: antibiotic compounds

Search Result 145, Processing Time 0.032 seconds

A study on The Effect of Antibiotics Usage too The Efficiency of Biological Piggery Wastewater Treatment (축산물에 사용되는 항생제가 축산폐수의 처리효율에 미치는 영향)

  • Cho, Mi Kyeong;Tran, Hung Thuan;Kim, Dae Hee;Jia, Yu Hong;Oh, Se Jin;Ann, Dae Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.1
    • /
    • pp.123-133
    • /
    • 2007
  • The presence of antibiotics in the wastewater from livestock farm due to its over-application should be concerned because they could change microbial ecology, increase the proliferation of antibiotic resistant pathogens, provoke toxic effect on aquatic species. In addition, these antibiotics can cause negative effect on the performance of biological wastewater treatment due to its antibacterial properties. In this study, our aim is to evaluate the effect of some common used antibiotic in Korea piggery farm such as oxytetracycline (OTC) to nitrification efficiency as well as organic compounds removal rate in biological system for treating piggery wastwater. The experiment was conducted in aeration batch reactor and lab-scale $A_2/O$(Anoxic-Anoxic-Oxic) system. From this study, it would be suggested that the piggery wastewater characterization should be examined in order to assess the fraction of common used antibiotics. The alternative treatment processes for piggery wastewater having high-strength antibiotics might be suggested in the future work.

  • PDF

Isolation, Structure Determination and Biological Activity of 25-Epi, $3{\alpha}-Carboxyacetylquercinic$ Acid in Daedalea dickinsii (띠미로버섯 중 25-Epi, $3{\alpha}-Carboxyacetylquercinic$ Acid의 분리정제, 구조결정 및 생리활성)

  • Bae, Kang-Gyu;Min, Tae-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • In order to develope bioactive substances, dried fmit body of Daedalea dickinsii collected from Taeback mountain was extracted with ethanol, The compounds 1 and 2 were purified by solvent extraction, silica gel column chromatography and recrystallization from the ethanol extracts. Melting point, molecular weight and molar extinction coefficient of the compound 1 were estimated to be $167{\sim}168^{\circ}C$, 572 and 5,040 at 208 nm. The structure of this compound 1 has been elucidated to be 24S, 25S, $3{\alpha}-carboxyacetylquercinic$ acid using spectroscopic properties. This compound showed antibiotic activities against fungi, yeasts and bacteria and it also showed anticancer activity $IC_{50}=64.5\;{\mu}M$) against Korean stomach cancer cell. Melting point, molecular weight and molar extinction coefficient of the compound 2 were estimated to be $233{\sim}235^<\circ}$, 572 and 5,080 at 208 nm. The structure of this compound was elucidated to be 24S, 25R, $3{\alpha}-carboxyacetylquercinic$ acid. The compound 2 showed different antibiotic activities with the compound 1.

  • PDF

Isoaltion and characterization of petroleum degrading bacteria (원유분해세균의 분리 및 특성)

  • Song, Young-Hwan
    • Journal of fish pathology
    • /
    • v.5 no.2
    • /
    • pp.153-158
    • /
    • 1992
  • From several sites of petroleum storage basement in South Coasts in Korea, various petroleum degrading bacteria have been isolated and characterized as Pseudomonas fluorescens, Acinetobacter baumanii, Pseudomonas maltophila and Pseudomonas aeruginosa, respectively. They show the ability of petroleum degradation on minimal media which contains petroleum as sole carbon source and loose the ability at high concentration of NaCl as increasing the concentration of NaCl from 0.5% to 6%. It has been confirmed that such bacteria have utilized the simple saturate hydrocarbon; n-decane, n-hexane, n-octane and n-decane because petroleum consists of various kinds of organic compounds. It has been also identified that petroleum degrading bacteria habor the plasmid and show the antibiotic resistance against ampicillin, tetracycline and chloramphenicol. These results strongly suggest that the petroleum degrading gene and antibiotic resistance gene might be located on the high molecular weight plasmid.

  • PDF

Genetic Transformation of Irpex lacterus and Phlebia tremellosa to an Antibiotic Resistance (아교버섯과 기계충버섯의 형질전환)

  • Kim, Yun-Jung;Kim, Myung-Kil;Song, Hong-Gyu;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.147-149
    • /
    • 2007
  • White-rot fungi which degrade lignin can also degrade diverse recalcitrant compounds such as polymeric dyes, explosives, pesticides, and endocrine disrupting chemicals. Lignin degrading enzymes are involved in the degradation reactions, and introduction of foreign genes into a white-rot fungus is required in order to increase the degrading capacity. Genetic transformation experiment has been carried out in Irpex lacteus and Phlebia tremellosa to an antibiotic resistance. The transformation yields were 50-70 transformants/${\mu}g$ DNA and 15-25 transformants/${\mu}g$ DNA in I. lacteus and P. tremellosa, respectively. The stable replication of the plasmid was confirmed by PCR using the plasmid-specific primers, and many mutants were generated during this integration in both fungi.

Anti-Helicobacter pylori Properties of GutGardTM

  • Kim, Jae Min;Zheng, Hong Mei;Lee, Boo Yong;Lee, Woon Kyu;Lee, Don Haeng
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.2
    • /
    • pp.104-110
    • /
    • 2013
  • Presence of Helicobacter pylori is associated with an increased risk of developing upper gastrointestinal tract diseases. Antibiotic therapy and a combination of two or three drugs have been widely used to eradicate H. pylori infections. Due to antibiotic resistant drugs, new drug resources are needed such as plants which contain antibacterial compounds. The aim of this study was to investigate the ability of GutGard$^{TM}$ to inhibit H. pylori growth both in Mongolian gerbils and C57BL/6 mouse models. Male Mongolian gerbils were infected with the bacteria by intragastric inoculation ($2{\times}10^9$ CFU/gerbil) 3 times over 5 days and then orally treated once daily 6 times/week for 8 weeks with 15, 30 and 60 mg/kg GutGard$^{TM}$. After the final administration, biopsy samples of the gastric mucosa were assayed for bacterial identification via urease, catalase and ELISA assays as well as immunohistochemistry (IHC). In the Mongolian gerbil model, IHC and ELISA assays revealed that GutGard$^{TM}$ inhibited H. pylori colonization in gastric mucosa in a dose dependent manner. The anti-H. pylori effects of GutGard$^{TM}$ in H. pylori-infected C57BL/6 mice were also examined. We found that treatment with 25 mg/kg GutGard$^{TM}$ significantly reduced H. pylori colonization in mice gastric mucosa. Our results suggest that GutGard$^{TM}$ may be useful as an agent to prevent H. pylori infection.

Antibacterial Activity of Salvia Miltiorrhiza against Methicillin-resistant Staphylococcus aureus (丹參의 methicillin 내성 황색포도구균에 대한 효과)

  • Seo, Myung-won;Jeong, Seung-il;Shin, Chol-gyun;Ju, Young-sung;Kim, Hong-jun;Ko, Byoung-seob
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.16 no.1
    • /
    • pp.94-99
    • /
    • 2003
  • Objectives : Gram-positive bacteria have became increasing resistant to antibacterial agents, and hence multi-drug-resistant bacterial pathogens are now a major problem in clinical medicine. There is, therefore, a need for new antibacterial agents. In the course of our screening program for potent antibacterial agent from medicinal plants, the extract of Salvia miltiorrhiza (S. miltiorrhiza) showed antibacterial activity against methcillin resistant Staphylococcus aureus (MRSA) and antibiotic-resistant S. aureus. Methods : S. miltiorrhiza was extracted with 80$\%$ EtOH. The extract was suspended in H2O and fractionated successively with hexane chloroform, ethyl acetate, and n-buthanol. The chloroform fraction, which showed the highest antibacterial activity(MICs, 78㎍/ml) against MRSA, was chromatographed on a silica gel column and recycling prep-LC to give the pure antibacterial component. Results and Conclusions : The second fraction among the chloroform soluble portion of an aqueous EtOH extract of S. miltiorrhiza root showed outstanding antibacterial activity against MRSA and antibiotic-resistant S. aureus compared to the other fraction. An active compound was isolated from the second fraction using silica gel column chromatoraphy and recycling prep-LC. Based on these data together with the IH-, 13C-NMR, mass and mp, the active compounds were identified tanshinone Ⅰ, dehydrotanshinone Ⅰ and cryptotanshinone. Among tanshinones, cryptotanshinone and dihydrotanshinone Ⅰ MICs against MRSA and antibiotics-resistant S. aureus were 12.5, 12.5 and 6.3㎍/ml, respectively.

  • PDF

Removal Characteristics of Sulfonamide Antibiotic Compounds in Biological Activated Carbon Process (생물활성탄 공정에서의 Sulfonamide계 항생물질 제거특성)

  • Son, Hee-Jong;Jung, Jong-Moon;Roh, Jae-Soon;Yu, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • In this study, the effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of sulfonamide 5 species in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BACs, increasing EBCT or increasing water temperature increased the sulfonamide 5 species removal in BAC columns. In the coal-based BAC columns, sulfachloropyridazine (SCP), sulfamethazine (SMT) and sulfathiazole (STZ) removal efficiencies were 30~80% and sulfadimethoxine (SDM), sulfamethoxazole (SMX) removal efficiencies were 18~70% for 5~20 min EBCT at $25^{\circ}C$. The kinetic analysis suggested a first-order reaction model for sulfonamide 5 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for sulfonamide 5 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of sulfonamide 5 species ranging from 0.0094~0.0718 $min^{-1}$ and 9.7 to 73.7 min various water temperaturs and EBCTs in this study could be used to assist water utilities in designing and operating BAC filters for sulfonamide antibiotic compounds removal.

Analogues of Hybrid Antimicrobial Peptide, CAMA-P2, Designed with Improved Antimicrobial and Synergistic Activities

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2577-2583
    • /
    • 2011
  • We have designed a 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) with high bacterial cell selectivity. CAMA-P2 is an ${\alpha}$-helical antimicrobial peptide designed from a CAMA hybrid peptide and substitution of Gly-Ile-Gly hinge sequence of CAMA to Pro influences the flexibility at central part of CAMA. Based on structure-activity relationships of CAMA peptides, to investigate the effects of the total positive charges on antimicrobial activity of CAMA-P2, the $Ser^{14}{\rightarrow}$Lys analogue (CAMA-syn1) was synthesized. The role of tryptophan at C-terminal ${\alpha}$-helix on its antimicrobial activity as well as synergistic activity was also investigated using $Ser^{14}{\rightarrow}$Lys/$Phe^{18}{\rightarrow}$Trp analogue (CAMA-syn2). Also, we designed CAMA-syn3 by substitution of $Lys^{16}$ located opposite side of substituted $Lys^{14}$ of CAMA-syn1 with Leu residue, resulting in increase of hydrophobicity and amphipathicity of the peptide. All of CAMA-syn analogues showed good antimicrobial activities similar to those of CAMA and CAMA-P2. The CAMA-syn1 and CAMA-syn2 showed low hemolytic activity and cytotoxicity against human keratinocyte Haca-T cells while CAMA-syn3 showed hemolytic activity and cytotoxicity at its MIC value. We then investigated their abilities to act synergistically in combination with the antimicrobial flavonoids and synthetic compounds screened in our laboratory. The results showed that all peptides exhibited synergistic effects with dihydrobinetin, while only CAMA-syn2 exhibited synergistic effects with YKAs3001 against both S. aureus and MRSA, suggesting that Trp residue at C-terminus of CAMA-syn2 may facilitate the polar antibiotic flavonoids and synthetic compounds to permeabilize the membrane. This study will be useful for the development of new antibiotic peptides with potent antimicrobial and synergistic activity but without cytotoxicity.

The Inhibitory Effect of Grapefruit Seed Extracts on the Physiological Function of Enterobacter pyrinus (Grapefruit 종자추출물이 Enterobacter pyrinus의 생리기능에 미치는 영향)

  • Lee, Tae-Ho;Jeong, Sook-Jung;Lee, Sang-Yeol;Kim, Jae-Won;Cho, Sung-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.985-990
    • /
    • 1995
  • Grapefruit seed extracts(GFSE) have some unknown compounds which exhibit the antibiotic activities aganist microorganisms including bacteria and fungi. We have examined the effects of GFSE on the growth of Enterobacter pyrinus which was isolated from necrotic lesions of pear trees. During the cultivation, the growth of the bacteria was strongly inhibited at the low concentration(0.01%, w/w) of GFSE. Hydrophobic fraction extracted from GFSE by mixed solvents (chloroform : methanol : water, 1 : 2 : 0.8, v/v/v) had components which inhibited the growth of bacteria. There was, however, no inhibitory effect of GFSE on the activities of several enzymes including hexokinase, glucose 6-phosphate dehydrogenase, malate dehydrogenase and succinate dehydrogenase. $O-nitrophenyl-{\beta}-D-galactopyranoside(ONPG)$, the artificial substrate of ${\beta}-galactosidase$ was hydrolyzed in the presence of GFSE, indicating that the membrane was pertubated by the GFSE. From the results it was suggested that the antibiotic activity of GFSE is due to the change of membrane permeability of cell. GFSE was fractionated by high performance liquid chromatography equipped with $C_{18}$ reverse phase column. Among active fractions, three peaks were identified as 1-chloro-2-methyl-benzene (o-toluene), N,N-dimethyl-benzenemethaneamine, 1-[2-(2-ethylethoxy)ethoxy]-4- (1,1,3,3-tetramethyl)-bezene, respectively, while the other three remained unidentified.

  • PDF

Assessment of Sensitivity of Photo-Chromosomal Assay in the Prediction of Photo-carcinogenicity (광염색체이상시험의 광발암성 예측능력에 대한 평가)

  • Hong Mi-Young;Kim Ji-Young;Lee Young Mi;Lee Michael
    • Toxicological Research
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2005
  • Photo-mutagenic compounds have been known to alter skin cancer rates by acting as initiators or by affecting subsequent steps in carcinogenesis. The objectives of this study are to investigate the utility of photo-chromosomal aberration (photo-CA) assay for detecting photo-clastogens, and to evaluate its ability to predict rodent photocarcinogenicity. Photo-CA assay was performed with five test substances that demonstrated positive results in photo-carcinogenicity tests: 8-Methoxypsoralen (photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation), chlorpromazine (an aliphatic phenothiazine an alpha-adrenergic blocking agent), lomefloxacin (an antibiotic in a class of drugs called fluoroquinolones), anthracene (a tricyclic aromatic hydrocarbon a basic substance for production of anthraquinone, dyes, pigments, insecticides, wood preservatives and coating materials) and Retinoic acid (a retinoid compound closely related to vitamin A). For the best discrimination between the test substance-mediated genotoxicity and the undesirable genotoxicity caused by direct DNA absorption, a UV dose-response of the cells in the absence of the test substances was firstly analyzed. All 5 test substances showed a positive outcome in photo-CA assay, indicating that the photo-CA test is very sensitive to the photo-genotoxic effect of UV irradiation. With this limited data-set, an investigation into the predictive value of this photo-CA test for determining the photo-carcinogenicity showed that photo-CA assay has the high ability of a test to predict carcinogenicity. Therefore, the photo-CA test using mammalian cells seems to be a sensitive method to evaluate the photo-carcinogenic potential of new compounds.