• Title/Summary/Keyword: antibiofilm effects

Search Result 13, Processing Time 0.018 seconds

Antibacterial and Antibiofilm Activities of Leaf Extracts of Stewartia koreana against Porphyromonas gingivalis (Porphyromonas gingivalis에 대한 노각나무 잎 추출물의 항균활성 및 생물막 형성 억제 효과)

  • Kim, Hye Soo;Park, Min Jeong;Kim, Soo Jeong;Kim, Bu Kyung;Park, JunHo;Kim, DaeHyun;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • This study was conducted to investigate the potential of Stewartia koreana as oral healthcare materials. The antibacterial activity of ethanol extracts from leaves and branches of S. koreana against oral bacteria was confirmed. The leaf and branch extracts (1 mg/disc) showed antibacterial activity against P. gingivalis only among several tested oral bacteria. The leaf extracts showed higher antibacterial activity, with values similar to those of chlorhexidine, which was used as a positive control. The MIC of the leaf extract against P. gingivalis was 0.4 mg/ml and showed bacteriostatic action. The inhibitory effects of the extract on biofilm formation and on gene expression related to biofilm formation by P. gingivalis were determined by biofilm biomass staining, scanning electron microscopy (SEM), and qRT-PCR analysis. The biofilm production rate and cell growth of P. gingivalis in the cultures treated with 0.2-2.0 mg/ml of S. koreana leaf extracts were significantly decreased in a concentration-dependent manner. The inhibitory effect on the formation of P. gingivalis biofilms at concentrations of 1 mg/ml was confirmed by SEM. The qRT-PCR analysis showed concentration-dependent suppression of the fimA and fimB gene expression associated with fimbriae formation in the cultures treated with 0.2-2.0 mg/ml S. koreana leaf extract. These results support the conclusion that S. koreana leaf extracts can be used as oral healthcare materials derived from natural materials, as demonstrated by the antibacterial action and inhibition of biofilm formation of P. gingivalis.

Antibacterial and Antibiofilm Activities of Diospyros malabarica Stem Extract against Streptococcus mutans (Streptococcus mutans에 대한 인도감나무 줄기 추출물의 항균활성 및 생물막 형성 억제 효과)

  • Kim, Hye Soo;Lee, Sang Woo;Sydara, Kongmany;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.90-96
    • /
    • 2019
  • The objective of this study was to evaluate the potential of Diospyros malabarica stem extract, a natural materials, in oral health material. With this aim in mind, thin layer chromatography (TLC), TLC-bioautography, high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and real-time qPCR were performed. The antibacterial activity of D. malabarica stem extract against Streptococcus mutans KCTC3065 was confirmed in an n-hexane fraction with low polarity. The molecular weight of the antibacterial compound was estimated to be 188 by ESI-MS analysis. The inhibitory effects of the extract on biofilm formation and gene expression related to biofilm formation of S. mutans were determined by SEM and real-time PCR analysis. The extract inhibited the formation of S. mutans biofilms at D. malabarica stem extract concentrations of 1 mg/ml, as shown by SEM. The real-time PCR analysis showed that the expression of the gtfC gene, which is associated with biofilm formation, was significantly decreased in a dose-dependent manner. Based on the above results, it can be concluded that D. malabarica stem extracts, a natural materials, can be used in oral health products to suppress the formation of biofilms by inhibiting tooth adhesion of S. mutans, a causative agent of dental caries.

Development of Functional Halogenated Phenylpyrrole Derivatives (기능성 할로겐화 페닐피롤 )

  • Min-Hee Jung;Hee Jeong Kong;Young-Ok Kim;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.842-850
    • /
    • 2023
  • Pyrrolnitrin, pyrrolomycin, and pyoluteorin are functional halogenated phenylpyrrole derivatives (HPDs) derived from microorganisms with diverse antimicrobial activities. Pyrrolnitrin is a secondary metabolite produced from L-tryptophan through four-step reactions in Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica, etc. It is currently used for the treatment of superficial dermatophytic fungal infections, has high antagonistic activities against soil-borne and foliar fungal infections, and has many industrial applications. Since pyrrolnitrin is easily decomposed by light, it is difficult to widely use it outdoors. As an alternative, fludioxonil, a synthetically produced non-systemic surface fungicide that is structurally similar and has excellent light stability, has been commercialized for seed and foliar treatment of plants. However, due to its high toxicity to aquatic organisms and adverse effects in human cell lines, many countries have established maximum residue levels and strictly control its levels. Pyrrolomycin and pyoluteorin, which have antibiotic/antibiofilm activity against Gram-positive bacteria and high anti-oomycete activity against the plant pathogen Pythium ultimum, respectively, were isolated and identified from microorganisms. This review summarizes the biosynthesis and production of natural pyrrolnitrin derived from bacteria and the characteristics of synthetic fludioxonil and other natural phenylpyrrole derivatives among the HPDs. We expect that a plethora of highly effective, novel HPDs that are safe for humans and environments will be developed through the generation of an HPD library by microbial biosynthesis and chemical synthesis.