• Title/Summary/Keyword: anti-yeast activity

Search Result 120, Processing Time 0.032 seconds

Extraction Yield and Anti-Yeast Activity of Extract from Green Tea Seeds by Pretreatment and Extraction Conditions (녹차씨 전처리와 추출 조건에 따른 녹차씨 추출물의 추출 수율 및 항효모 활성)

  • Yang, Eun Ju;Seon, Yoo Kyung;Wee, Ji-Hyang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1351-1357
    • /
    • 2016
  • Green tea (Camellia sinensis) seed extract (GTSE) was prepared under various pretreatment conditions and used to investigate its extraction yield and anti-yeast activity. Anti-yeast activity of GTSE from seeds with or without the coats was the same, whereas the extraction yield was slightly higher in extract from seeds without the coat. Anti-yeast activity of GTSE from seeds with different water contents or particle sizes was the same, whereas the extraction yield was highest in extract from seeds with 7.3% moisture or a smaller particle size. Anti-yeast activity of defatted green tea seed extract (DGTSE) was the same as that of GTSE. Extraction yield was higher in DGTSE from defatted seeds by the oil press machine compared to hexane extraction. Defatted green tea seed (DGTS), a by-product from the oil extraction process, is a good natural source of anti-yeast preservative. The extraction yield and anti-yeast activity of DGTSE were investigated using various extraction solvents, temperatures, and times. The results show that water was an economic extraction solvent, and anti-yeast activity of DGTSE was unstable at $90^{\circ}C$. These results suggest that water, extraction temperature of $50^{\circ}C$, and extraction time of 4 h were the most efficient for extraction of anti-yeast compounds from DGTS.

Rahnella aquatilis Strain AY2000 Produces an Anti-Yeast Substance

  • Ryu, Eun-Ju;Kim, Han-Woo;Kim, Byung-Woo;Kwon, Hyun-Ju;Kim, Kwang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1597-1604
    • /
    • 2006
  • To screen for an anti-yeast substance (AYS), many bacteria were isolated from soil and a strain AY2000 was selected. The strain AY2000 was identified as Rahnella aquatilis by morphology, biochemical properties, and 16S r-RNA nucleotide sequence analyses. The strain AY2000 showed anti-yeast activity against Candida albicans and Saccharomyces cerevisiae, whereas R. aquatilis ATCC33071 as a type strain did not show the activity against the yeasts under the same condition. The growth of yeast cell was significantly inhibited by AYS produced by the strain AY2000, as shown by optical density and MTT assay. The minimum inhibitory concentration (MIC) of the AYS against S. cerevisiae and C. albicans at $28^{\circ}C\;was\;20{\mu}g/ml\;and\;60{\mu}g/ml$, respectively. The MIC of AYS against hyphae of C. albicans at $37^{\circ}C\;was\;600{\mu}g/ml$. Scanning electron microscopic analysis revealed that yeast cells treated with AYS had an irregular form with a wrinkled and rough surface.

Physicochemical and Functional Properties of Yeast-Fermented Cabbage

  • Ahhyeon Chun;So Jeong Paik;Jongbeom Park;Ryeongeun Kim;Sujeong Park;Sung Keun Jung;Soo Rin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1329-1336
    • /
    • 2023
  • Microbial fermentation is often used to improve the functionality of plant-based food materials. Herein, we investigated changes in the physicochemical and functional properties of cabbage during yeast fermentation to develop new products using fermented cabbage. Among the 8 types of food-grade yeast, both Saccharomyces cerevisiae and Saccharomyces boulardii fermented 10% cabbage powder solution (w/w) the most effectively, leaving no soluble sugars after 12 h of fermentation. In addition, the yeast fermentation of cabbage resulted in functionally positive outcomes in terms of sulforaphane content, antioxidant properties, and anti-inflammatory activity. Specifically, the yeast-fermented cabbages contained about 500% more sulforaphane. The soluble fraction (5 ㎍/ml) of yeast-fermented cabbage had no cytotoxicity in murine RAW 264.7 cells, and the radical-scavenging capacity was equivalent to 1 ㎍/ml of ascorbic acid. Moreover, cabbage fermented with S. boulardii significantly suppressed both lipopolysaccharides (LPS)-induced nitric oxide production and LPS-induced reactive oxygen species production in RAW 264.7 cells, suggesting a potential anti-inflammatory effect. These results support the idea that yeast fermentation is promising for developing functionally improved cabbage products.

Trehalose Protects Activity of Anti-Yeast Substance Produced by Rahnella aquatilis Strain AY2000 (Trehalose에 의한 Rahnella aquatilis AY2000 균주가 생산하는 항효모성 물질의 활성보호)

  • Kang, Min-Jung;Lee, Jong-Hwan;Lee, Bok-Kyu;Kim, Kwang-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.361-364
    • /
    • 2009
  • Rahnella aquatilis strain AY2000 produces an anti-yeast substance (AYS), however activity of the AYS tends to be decreased by heat. To investigate whether trehalose can protect AYS activity against heat, comparative studies on the AYS with and without trehalose were performed. After heat treatment at high temperatures ($50^{\circ}C-70^{\circ}C$), the AYS with trehalose had higher activity than the AYS without trehalose had. In case of AYS with trehalose (0.3-0.9M), activity of the AYS could be determined at ranging from $7.8\;{\mu}g/mL$ to $31.3\;{\mu}g/mL$ on S. cerevisiae by MTT method. Consequently, activity of the AYS after heating was well maintained by trehalose.

Anti-tumor and immuno-stimulating activity of fungal polysaccharides

  • Lee, Jae-Hoon
    • The Microorganisms and Industry
    • /
    • v.20 no.3
    • /
    • pp.14-21
    • /
    • 1994
  • Low molecular weight molecules and high molecular weight substances were found to have anti-tumor and immuno-modulating activity. Previously polysaccharides have been received much attention because of adhesives, food additives or animal foods (Whistler et al., 1976). In effort of developing new anti-tumor substances with low toxicity, numerous polysaccharides from yeast, algae, bacteria, higher plants and especially fungi have been investigated for anti-tumor and immuno-modulating activities. Thus the high molecular weight molecule was reported to have anti-tumor activity through host mediated immunity. In this brief article, attention will be paid to polysaccharides which is especially fungal origin.

  • PDF

Stability of Anti-Yeast Activities and Inhibitory Effects of Defatted Green Tea Seed Extracts on Yeast Film Formation (탈지 녹차씨 추출물의 항효모 활성 안정성 및 산막 형성 억제능 평가)

  • Yang, Eun Ju;Seo, Ye-Seul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • Water and 75% ethanol extracts were prepared from defatted green tea seeds and evaluated for their anti-yeast activities. The antimicrobial activities of defatted green tea seed extracts (DGTSEs) were tested against food-spoilage bacteria, yeasts, and molds. DGTSEs exhibited antimicrobial activities with minimum inhibitory concentrations of $39{\sim}1,250{\mu}g/mL$ against three bacteria, two molds, and all tested yeast strains. Ethanol extract showed higher antimicrobial activity than water extract. The stability of anti-yeast activities of DGTSEs was examined under different conditions of temperature, pH, and NaCl concentrations. The anti-yeast activities of DGTSEs were stable at pH 3~9, 0~20% NaCl, and $100^{\circ}C$ for 30 min. However, anti-yeast activities of DGTSEs decreased upon heating at $70^{\circ}C$ for 24 h or $121^{\circ}C$ for 15 min. DGTSEs were applied to food models to determine their inhibitory effects on yeast film formation. Water and 75% ethanol extracts were effective in preventing yeast film formation at concentrations more than 156 and $39{\mu}g/mL$ in soy sauce, 156 and $78{\mu}g/mL$ in pickle sauce, and 78 and $39{\mu}g/mL$ in kimchi, respectively.

Production and Its Anti-hyperglycemic Effects of γ-Aminobutyric Acid from the Wild Yeast Strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1

  • Han, Sang-Min;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.199-203
    • /
    • 2017
  • This study was done to produce ${\gamma}$-aminobutyric acid (GABA) from wild yeast as well as investigate its anti-hyperglycemic effects. Among ten GABA-producing yeast strains, Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1 produced high GABA concentration of $134.4{\mu}g/mL$ and $179.2{\mu}g/mL$, respectively. P. silvicola UL6-1 showed a maximum GABA yield of $136.5{\mu}g/mL$ and $200.8{\mu}g/mL$ from S. carnicolor 402-JB-1 when they were cultured for 30 hr at $30^{\circ}C$ in yeast extract-peptone-dextrose medium. The cell-free extract from P. silvicola UL6-1 and S. carnicolor 402-JB-1 showed very high anti-hyperglycemic ${\alpha}$-glucosidase inhibitory activity of 72.3% and 69.9%, respectively. Additionally, their cell-free extract-containing GABA showed the anti-hyperglycemic effect in streptozotocin-induced diabetic Sprague-Dawley rats.

Production and Characterization of an Anti-Angiogenic Agent front Saccharomyces cerevisiae K-7

  • Jeong, Seung-Chan;Lee, Dae-Hyoung;Lee, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1904-1911
    • /
    • 2006
  • The cell-free extracts of 250 yeasts were screened for their in vitro anti-angiogenic activity, to develop a new cancer metastasis inhibitor. Saccharomyces cerevisiae K-7 was selected as the producer of the anti-angiogenic agent, because it had the highest anti-angiogenic activity. The anti-angiogenic agent was produced maximally from hydrolysates of Saccharomyces cerevisiae K-7, when the yeast was cultured in yeast extract-peptone-dextrose medium at 30$^{\circ}C$ for 24 h, and cell-free extracts were than digested with pepsin for 4 h at 37$^{\circ}C$. The anti-angiogenic agent was further purified by ultrafiltration, Sephadex G-25 gel permeation chromatography and reverse-phase HPLC, and the anti-angiogenic activity of the final purified preparation was 72.7% at 10 $\mu$M/egg. The purified anti-angiogenic agent was found to originate from the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) molecule of Saccharomyces cerevisiae K-7, and its peptide sequence was Val-Ser-Trp-Tyr-Asp-Asn-Glu-Tyr-Gly-Tyr-Ser-Thr-Arg-Val-Val-Asp. In the MTT assay, the shape of the HT-l 080 cell was clearly changed to a circular type at 0.2 mM purified anti-angiogenic agent. This result indicated that the growth of the HT-I080 cell was significantly inhibited at 0.2 mM of the purified anti-angiogenic agent. The MMP activity of the treated HT-l080 cells was not affected, evidenced by the gelatin zymography, indicating that the anti-angiogenic mechanism of the purified anti-angiogenic agent is not mediated through MMP activity.

Inhibitory Effect of Ethanol Extract of Monascus-fermented Red Yeast Rice on Proinflammatory iNOS and COX-2 Protein Expression in LPS-stimulated RAW 264.7 Macrophage Cells (Monascus sp. BHN-MK로 발효생산한 홍국 에탄올 추출물의 Raw 264.7 대식세포에 있어 친-염증성 iNOS와 COX-2 단백질 발현 억제 효과)

  • Kim, Ki Hyun;Lee, Jung-Hyeong;Kwon, Gi-Seok;Seo, Eul Won;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.352-358
    • /
    • 2020
  • Red yeast rice has been extensively used as a food and traditional medicine for thousands of years in Korea. Monascus produces many secondary metabolites during its growth, including pigments, monacolins, and γ-aminobutyric acid. Some metabolites, specifically monacolin K, γ-aminobutyric acid, and dimerumic acid, have been reported to lower cholesterol and blood pressure because of certain antioxidant effects. This study investigated the total phenolic content of ethanol extract from red yeast rice fermented with Monascus sp. BHN-MK and its anti-inflammatory effect on LPS-stimulated RAW 264.7 macrophage cells. To assess its anti-inflammatory effect, the inhibitory activity of the ethanol extract on LPS-induced NO production and expression levels of iNOS and COX-2 proteins in macrophage cells were measured. Its total polyphenol content was higher than that of ordinary non-fermented rice. Its NO production inhibition activity was comparable to that of the negative control group treated with LPS at a concentration of 400 ㎍/ml. Western blot revealed a significant decrease in the inhibition of iNOS and COX-2 protein expression at concentrations of 400 and 800 ㎍/ml, respectively. Red yeast rice ethanol extracts exerted the strongest anti-inflammatory effects. The results indicate that red yeast rice could be used as a functional cosmetic and anti-inflammatory material.

Anti-pyretic and anti-inflammatory activity of chloroform extract of Croton roxburghii in standard animal models

  • Sivakumar, T;Rajavel, R;Karthikeyan, D;Duraisamy, R;Srinivasan, K;Kumar, S Suresh;Karki, Subhas S
    • Advances in Traditional Medicine
    • /
    • v.8 no.3
    • /
    • pp.252-259
    • /
    • 2008
  • The chloroform extract of Croton roxburghii (Family: Euphorbiaceae) was evaluated for its antipyretic effects in Brewer's yeast induced hyperthermia in rats. The anti-inflammatory effect of the Croton roxburghii was also evaluated by using carrageenan, dextran, histamine, serotonin induced rat paw oedema and cotton pellet induced granuloma (chronic) models in rats. The chloroform extract of Croton roxburghii (CECR) exhibited significant anti-pyretic and anti-inflammatory effect at the dose 50, 100 and 200 mg/kg. Maximum inhibition (55.32%) was notedat the dose of 200 mg/kg after 3 h of drug treatment in carrageenan induced paw oedema, whereas the Indomethacin (standard drug) produced 61.33% of inhibition. The extract exhibited significant anti-inflammatory activity in dextran induced paw edema in a dose dependent manner. In the chronic model (cotton pellet induced granuloma) the CECR (200 mg/kg) and Indomethacin (10 mg/kg) showed decreased formation of granuloma tissue by 52.32% and 56.32% respectively. The extract also exhibited a significant antipyretic response in Brewer's yeast induced pyrexia in rats. Thus, the present study revealed that the CECR exhibited significant antipyretic and anti-inflammatory activity in the tested animal models.