• Title/Summary/Keyword: anti-windup control

Search Result 87, Processing Time 0.029 seconds

A New Overmodulation Strategy for Traction Dirve. (견인용 인버터를 위한 새로운 과변조 기법)

  • 배본호;설승기;김상훈;이인석;한성수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.171-178
    • /
    • 1998
  • This paper proposes a new overmodulation strategy to give a better voltage utilization by tracking voltage vector along hexagon sides. This strategy enables the inverter to control both magnitude and angle of current. Therefore, the vector control using this strategy can lead to better output torque dynamics compared to the conventional slip frequency control with six-step voltage, which is widely used in the traction drive. In this strategy, the d-axis output voltage of a current controller to control the flux is conserved and the q-axis output voltage to control the torque is controlled to place the voltage vector on the hexagon boundary In case of overmodulation. The limited q-axis voltage is used for anti-windup of q-axis current controller. This paper also presents a new field weakening scheme which incorporate the proposed overmodulation strategy. In this scheme, the flux level is selected by both required current limit and the available maximum voltage along hexagon sides. The validity of the proposed overall scheme is confirmed by the computer simulations for a typical traction drive with a 210[㎾] induction motor.

  • PDF

ARW method for saturating systems

  • Choi, Chong-Ho;Park, Jong-Koo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.229-234
    • /
    • 1992
  • This paper presents a compensator design method for multivariable feedback control systems with saturating actuators based on the concept of the equilibrium point. Am explicit expression for the compensation matrix of the general anti-reset windup(ARW) scheme is derived by minimizing the distances between the equilibrium points. The resulting dynamics of the compensated controller exhibits the reduced model form of the unsaturated system which can be obtained by the singular perturbational method. The proposed method is applicable to any open-loop stable plants with saturating actuators whose controllers are determined by some design technique. An example is given to show the effectiveness of the proposed method.

  • PDF

Adaptive Control with Antiwindup Scheme for Relaxed Static Stability(RSS) Missiles with Saturating Actuator

  • Kim, Young-Hwan;Chwa, Dong-Kyung;Im, Ki-Hong;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.54.4-54
    • /
    • 2001
  • This paper proposes an adaptive control scheme for an autopilot design of Relaxed-Static-Stability(RSS) Missiles with saturating actuator. The feedback linearization controller eliminates nonlinear terms in RSS missile dynamics and makes the entire system linear. But modeling errors, disturbances and the nonlinear mismatch due to input constraints exert a bad influence on the performance of the feedback linearization controller Thus, first, we derive a parametric affine uncertainty model with modeling errors and disturbances. Then an adaptive control law with anti-windup scheme is developed, where the bounds of uncertainties are estimated with adaptive laws. The proposed adaptive controller can remove the bad effects of uncertainties, of disturbances, and of saturating actuator ...

  • PDF

Adaptive-Predictive Controller based on Continuous-Time Poisson-Laguerre Models for Induction Motor Speed Control Improvement

  • Boulghasoul, Z.;El Bahir, L.;Elbacha, A.;Elwarraki, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.908-925
    • /
    • 2014
  • Induction Motor (IM) has several desirable features for high performance adjustablespeed operation. This paper presents the design of a robust controller for vector control induction motor drive performances improvement. Proposed predictive speed controller, which is aimed to guarantee the stability of the closed loop, is based on the Poisson-Laguerre (PL) models for the association vector control drive and the induction motor; without necessity of any mechanical parameter, and requires only two control parameters to ensure implicitly the integrator effect on the steady state error, load torque disturbances rejection and anti-windup effect. In order to improve robustness, insensitivity against external disturbances and preserve desired performance, adaptive control is added with the aim to ensure an online identification of controller parameters through an online PL models identification. The proposed control is compared with the conventional approach using PI controller. Simulation with MATLAB/SIMULINK software and experimental results for a 1kW induction motor using a dSPACE system with DS1104 controller board are carried out to show the improvement performance.

Development of 1-axis Exciter for a Seat Vibration Test of Agricultural Tractors(I) - Design of PID Controller for Position Control of 1-axis Exciter - (농용트랙터용 운전자 좌석 진동 시험을 위한 1축 가진 시험기 개발(I) - 1축 가진 시험기 위치 제어를 위한 PID 제어기 설계 -)

  • Yu, Ji-Hoon;Choi, Young-Kyun;Lee, Kyu-Cheol;Kim, Young-Joo;Ryu, Young-Sun;Ryuh, Kwan-Hee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.305-314
    • /
    • 2009
  • The purpose of this paper was to design an effective control system of 1-axis exciter for a seat vibration test of agricultural tractors using MATLAB simulation. The developed simulation model was composed with a hydraulic pump, a hydraulic servo valve, a hydraulic cylinder and load system. Also it was verified by comparing the simulation results with experimental results of actual control system in order to optimize the control performance. And in order to improve its control performance, the designed PID controller in this research was tuned using Ziegler-Nichols 2nd law and zero's moving method of PID controller's transfer function. As the result of these research, the developed position control system was able to control the system's position accurately within 5% errors.

Design and Control of Wire-driven Flexible Robot Following Human Arm Gestures (팔 동작 움직임을 모사하는 와이어 구동 유연 로봇의 설계 및 제어)

  • Kim, Sanghyun;Kim, Minhyo;Kang, Junki;Son, SeungJe;Kim, Dong Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.50-57
    • /
    • 2019
  • This work presents a design and control method for a flexible robot arm operated by a wire drive that follows human gestures. When moving the robot arm to a desired position, the necessary wire moving length is calculated and the motors are rotated accordingly to the length. A robotic arm is composed of a total of two module-formed mechanism similar to real human motion. Two wires are used as a closed loop in one module, and universal joints are attached to each disk to create up, down, left, and right movements. In order to control the motor, the anti-windup PID was applied to limit the sudden change usually caused by accumulated error in the integral control term. In addition, master/slave communication protocol and operation program for linking 6 motors to MYO sensor and IMU sensor output were developed at the same time. This makes it possible to receive the image information of the camera attached to the robot arm and simultaneously send the control command to the robot at high speed.

Design of Cascade Pl Controller for Induction Motor Drives using Genetic Algorithm (유전자 알고리즘을 이용한 유도전동기 Cascade PI 제어기 설계)

  • Lee H.J.;Kwon S.C.;Yang S.K.;Han S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.820-823
    • /
    • 2003
  • In this paper, we describe a design procedure for cascade controller for induction motor drives based on Genetic Algorithms(GAs). Most electric drives have two separate controllers for current and speed control, which are in general designed in two consecutive steps(firstly the current controller and then the speed controller). We search simultaneously for the couple of discrete anti-windup controllers achieving the optimal compromise of weighted cost and performance indices related to both current and speed responses.

  • PDF

Vector Control System for Induction Motor using ANFIS Controller (ANFIS Controller틀 이용한 유도전동기 벡터제어 시스템)

  • Lee, Hak-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1051-1052
    • /
    • 2006
  • This paper deals with mathmatical of an induction motor, considering non-linearity in the torque balance equation under closed loop operation with a reference speed. A controller based on Adaptive Nuro-Fuzzy Inference System (ANFIS) is developed to minimize overshoot and settling time following sudden changes in load torque. The overall system is modeled and simulated using the Matlab/simulink and Fuzzy Logic Toolbox. The advantages of fuzzy logic and neural network based fuzzy logic controller. Required training data the ANFIS controller is generated by simulation of the anti-windup PI controller is eliminated using the ANFIS controller. The transient deviation of the response from the set reference following variation in load torque is found to be negligibly samll along with a desirable reduction in settling time for the ANFIS controller.

  • PDF

Anti-windup PID Control of Engine Throttle Actuator in Autonomous ATV (무인 ATV 엔진 스로틀 액츄에이터의 안티 와인드업 PID 제어)

  • Kim, Soon-Tae;Jung, Jin-Gu;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.295-296
    • /
    • 2007
  • 본 논문에서는 무인화 ATV 엔진 액츄에이터의 시스템 특수성을 고려한 PID 제어기의 설계를 통하여 종방향 구동을 담당하는 DC 모터의 위치제어 성능을 향상시켰다. DC 모터의 문턱 전압과 마찰력으로 인한 데드존(Dead zone)을 고려하였으며, DC 모터에 연결된 액츄에이터 와이어에 의한 복원력에 대한 영향을 최소화 시켰다. 또한 DC모터의 위치를 판별하는 엔코더의 분해능을 감안하여 제어기 설계에 반영하였고, 실험을 통하여 성능을 검증하였다.

  • PDF

A Comparison of Bidirectional DC-DC Converter Hybrid Anti-Windup Control Methods for Seamless Transfer in Battery Connected Systems (배터리 연계 무순단 절체를 위한 양방향 DC-DC 컨버터 하이브리드 안티-와인드업 제어 기법 비교)

  • Eom, Jun-Yong;Choi, Sung-Jin;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.186-187
    • /
    • 2019
  • DC마이크로그리드에서 양방향 컨버터를 통한 계통과 배터리간의 전력교환은 계통연결 시 배터리를 충전시키고 계통분리 시 배터리를 통해 독립운전을 하는 양방향 동작의 형태로 수행된다. 이러한 운전모드 전환시 과도 오차를 줄이기 위해 무순단 절체 기능이 필요하다. 본 논문에서는 무순단 절체를 위해 전류 제어기를 공유함으로 발생하는 전압제어기 포화를 방지하는 하이브리드 안티와인드업 기법을 제안한다. DC마이크로그리드 시스템으로 구현해, 시뮬레이션을통해 기존방식과의 비교하고 제안한방식의 타당성을 검증하였다.

  • PDF