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Abstract: This paper presents a compensator design method
for multivariable feedback control systems with saturating ac-
tuators based on the concept of the equilibrium point. An
explicit expression for the compensation matrix of the gen-
eral anti-reset windup (ARW) scheme is derived by minimiz-
ing the distances between the equilibrium points. The resulting
dynamics of the compensated controller exhibits the reduced
model form of the unsaturated system which can be obtained
by the singuler perturbational method. The proposed method
is applicable to any open-loop stable plants with saturating ac-
tuators whose controllers are determined by some design tech-
nique. An example is given to show the effectiveness of the

proposed method.

1. Introduction

The actuator saturation not only deteriorates the perfor-
mance of the control system, but can also lead to instability
since the feedback loop is broken in such situations. When
a linear controller shows integral action, the controller output
will exceed the saturation level quickly. This results in serious
performance degradation ( large overshoots and large settling
times ) and the phenomenon is called the reset windup.

This paper deals with a two-step design procedure for satu-
rating systems. That is, we assume that a linear controller has
already been designed which gives satisfactory behavior for the
multivariable linear system in the absence of saturating actu-
ators. The objective is to provide an additional compensator
that gives graceful performance degradation of the closed loop
system under saturation. We address this objective based on
the ARW scheme which was proposed by Astrém and Witten-
mark (1984) for the state space description of the system, since
this configuration is somewhat standard for this problem.

The proposed method is motivated by engineering insight
into the saturating systems. But it is closely related to the sin-
gular perturbational model reduction method which has been
well known in control theory( Kokotovic et al., 1976, 1986;
Saksena et al., 1984). The resulting compensated controller
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reflects the dynamics of closed-loop systems in the absence of
saturating actuators. Moreover the compensation matrix in
the controller is expressed in closed form with the plant and
controller parameters. This method can be applied to con-
trol systems even when the high frequency gain matrix of the
controller is not full rank whereas the conditioning technique
cannot be directly applied to. The performance of the pro-
posed method is satisfactory in view of the control objective
that provides graceful performance degradation of the system

under saturation.

2. Anti-reset Windup scheme

Generally, a controller is designed to have an integrator or
relatively slow dynamics, e.g. PI controller, for the purpose of
eliminating or reducing the steady state error. Hence a sud-
den change in the reference input or disturbances result in a
large control input signal to the plant due to the integral action
of the controller. At that moment, the control signal can ex-
ceed the saturation level and the output transient response can
be undesirable. This phenomenon is called the reset windup.
Controllers with relatively fast dynamics do not exhibit windup
problems significantly, where the term relatively slow(fast) dy-
namics means that the dynamics of the controller is slow(fast)
compared with the plant dynamics.

Figure 1. The control system with saturating actuators.

In this paper, we shall formulate and solve the problem
using the state-space representation. The plant and the con-
troller are expressed by the following minimal state space rep-

resentations:



Plant:
2p(t) = Az,(t) + Bu(t), (1)
W) = Caplt)+ Dult), @
ue) = sat(o(®), (®)
Controller:
2l) = Fadft)+Gelt) @

v(t) = Haz(t)+ Le(t), (5)

e(t) = r(t) - y{t) - d(1), (6)

where r(t) € R™ is the reference input vector, u(t) € R™ is the
control input vector, y(t) € R™ is the output vector, v(t) € R™
is the controller output vector, d(t) € R™ is the disturbance
vector, z,(t) € R is the state vector of the plant, and z.(t) €
R? is the state vector of the controller. The dimensions of
the constant matrices A, B,C, D, F,G,H, and L are p X p,p X
m,n X p,n X m,qgXqg,¢gXn,mx g, and m x n respectively.

The saturating actuators operate as
sat(v) = [sat(v) sat(vy) --- sat(vm)]T, )

where v;, = 1,--- ,m, is the ith element of v and

Vi v < Vi
sat(v;) =4 v vy <v<wvip (8)
Yih Vi > Vi,

for some constants v;;(< 0) and v; n(> 0).

The idea of the anti-reset windup is to provide a local ar-
rangement around the controller with the difference between
the controller output signal v(t) and the saturated control sig-
nal u(t)(Astrém and Wittenmark, 1984; Campo and Morari,
1990; Hanus et al., 1987). The compensation scheme shown in
Fig. 2 was presented in Astrém and Wittenmark (1984) based
on the observer technique. The dynamics of the compensated
controller is the following:

Compensated controller:

il

£(t) = Faut) + Ge(t) - M(v(t) - u(t))

i

(F — MH)z(t) + (G — ML)e(t) + Mu(t), (9)

v(t) = Haz(t)+ Le(t), (10)

where M is the compensation matrix with dimension ¢ x m.
Introduction of the compensation matrix M does not change
the behavior of the closed loop system when u(t) = v(t). When
u(t) # v(t), however, the dynamics of the controller can be
changed arbitrary by an adequate choice of M since (H, F) is
observable by the minimality of the state space description.
The compensation matrix affects the performance of the
closed loop system, but it is not known what is the best choice
for M. If one has a reasonable method of selecting a proper M,

then the two-step design procedure for saturating systems will

be a powerful design tool. Hence many researchers are inter-
ested in finding a general method for selecting the compensa-
tion matrix M in recent years. For example, the conditioning
technique is one of the major result in this area which has been
developed based on a quite different viewpoint other than the
observer technique. But it can be shown that this method is a
special case of the ARW method in Fig. 2. The design object
of this method is to ensure that the error e(t) has no effect
on the states of the controller in the event of saturation. And
this is achieved by selecting M = GL~!(Campo and Morari,
1990). Nevertheless, this method requires some modifications
when L, the high frequency gain matrix of the controller, is
not full rank. Moreover it does not reflect the plant dynamics
in anyway. In the next section, we will develop a method to
solve some of these problems, which is quite different from the

conditioning technique in the compensation concept.

Compensa‘.or I

Figure 2. The system with an antireset windup compensa-

tion.

3. Derivation of the compensation
matrix

In general, the performance degradation is caused by the
fact that the states of the controller achieve different values
from those in the absence of saturating actuators. This can re-
sult in improper control signals and consequently deteriorates
the closed-loop performance.

Consider the meaning of equilibrium points. The equilib-
rium point is a terminal state where any initial state moves to
as time passes on if the control system is stable. In fact, the
equilibrium point of the stable closed-loop system is unique in
the absence of a saturating actuator. But the saturating ac-
tuator splits the unique equilibrium point into several virtual
equilibrium points.

From this observation, we conjecture that the performance
of the system will be improved as the distances between the
equilibrium points of the saturated and unsaturated system
become small. This seems to be unfamilar for the compensator
design method, but it will be shown in the next section that
this method has close relation with the singular perturbational
model reduction method.

Now we will determine the compensation matrix M in the
ARW scheme of Fig. 2 based on thisidea. First, we will rewrite

the dynamics of the plant (1) and the compensated controller



(9) depending on the absence or the presence of saturating
actuators.
(¥) The dynamics of the closed-loop system in the absence of

saturating actuators:
Ze

BRas

Zp
where
oy [ F-GD(I+LD)'H -G[I-D(I+LD)"\L|C
B(I+LD)'H A- B(I+LD)™'LC

(i) The dynamics of the closed-loop system in the presence of

G|I- D(I+LD)"'1L]
B(I+LD)'L

Te

] (r - d),(11)

Zp

saturating actuators:

(C = ML)(r - d) + [M(I + LD) — G D}sat;(v)
Bsat;{v)
Agat 1= [

where sat;(v) represents the output of the saturating actuators

]13)

F-MH ’ (14)

0

-(G - ML)C

when the actuators operate in the sth mode among 3™ — 1
possible modes. When the function sat;{-) operates in the
linear region, (13) becomes (11).

When the plant is open-loop unstable, the closed-loop sys-
tem with saturating actuators can never be stabilized globally
because there is always a state which cannot be made to con-
verge to the desired state due to the limitation of the control
inputs. Hence we will only consider open-loop stable plants.
Further, we give some assumptions, which are necessary in de-

termining the compensation matrix M.

Assumption 1.

(a) The plant is stable, i.e., the system matrix A of (1) has
stable eigenvalues.

(b) The controller provides acceptable nominal performance in
the absence of saturating actuators.

(¢) A— B(I+ LD)™1LC is nonsingular.

Assumption 1.(a) and (b) are standard in this kind of works.
Assumption 1.(c) is necessary for a technical reason and can
be easily checked before designing the compensation matrix.

Choose M such that the distances between the equilibrium
points of (11) and (13) are as small as possible in the sense
of the Fuclidean norm. This leads to an optimization prob-
lem. Let (Z.,%,)T denote the equilibrium point of (11) and
(Ze,irZps)T, i = 1,---,3™ — 1, denote the virtual equilibrium
point of (13). Note that the distance between the equilibrium
points of (11) and (13) can vary differently depending on the

reference input r, the disturbance d, and satuaration levels.

(12)
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Theorem 1.
Consider the general ARW scheme shown in Fig. 2. When

Assumption 1 is satisfied, the solution M of

min
M

is uniquely determined by

§m-1
I = 30 (B = 2es)T(Ee ~ Zeg) + (Zp ~ 2p)T(3p — Zp0)]'V?
i=1

M=G(D-CA'B)|[(I+LD)~- LCA™'B]! (16)

Proof.
Omitted for brevity.

Remarks:

(f) M of (16) is independent of the reference input r, the
disturbance d, and the saturation levels, although the distance
between the saturated and unsaturated equilibrium points can
vary differently depending on them. Hence, in the two-step
design procedure, once a linear controller is designed a priori,
the resulting M is determined directly.

(¢¢) The proposed M depends explicitly on the plant and
controller dynamics whereas the conditioning scheme depends
only on the controller dynamics. Furthermore, the proposed
method is meaningful even when the high frequency gain of
the controller is 0, <.e., L = 0 in (5), though the conditioning
technique can not be applied directly.

(fi7) When the directionality of control input affects the
closed-loop performance substantially, it is insufficient to com-
pensate the saturated system only with the proposed method.
It was suggested to preserve the direction of the control input
when one of the input signals is saturated(Campo and Morari,
1990). This can be well achieved by inserting an additional
block in the loop.

4. Theoretical verification of the

proposed method

The proposed compensation scheme will be shown to have
some relation with the singular perturbational model reduction
method which is a popular method for obtaining reduced-order
representations of linear systems( Kokotovic et al., 1976, 1986;
Saksena et al., 1984). To begin with, the principal contents of
the perturbed method will be reviewed.

Consider the linear time-invariant singularly perturbed sys-

tem.
z = Anz+ Apz+ Biu 17
pz = Anz+ Anz+ Bau (18)
and
A= ( A A )
A1 Az

where z, z, and u are n, m, and r dimensional column vec-

}(15)



tors respectively, and u represents a small positive parameter.
All the elements of A;; and B; have comparable magnitudes.
When Aj; is nonsingular, one can obtain a reduced order sys-

tem by setting 4 = 0 and

7= —A;} AnZ — Ay} Bol. (19)

The reduced order system is

Z = AgZ + Botl

(20)
where

Ag = Ay — A12Az] Ay, Bo= By - ApAyBs. (21)

The reduced-order state matrix Ag is the Schur complement
of Az2 in A and is denoted by (A/Az22)(Cottle, 1974). The
Schur complement of a partitioned matrix appears frequently
in the model reduction problems and other various areas.

This method is valid in any ordinary state equation such

I

A1 Apnzy + Appza + Biu

(22)

.’1’:2 A21:c1 + Azzzz + Bz‘u (23)
if it satisfies the condition that the dynamics of z; is sufficiently
faster than that of z;, and the resulting reduced model, by

setting 23 = 0, is (Liu and Anderson, 1989)

i] = (A“ — A12A2_21A21)f1 + (Bl - AuA;lez)ﬂ. (24)

The perturbational method not only reduces the model or-
der, but also approximates the original states as the follow-
ing{Kokotovic et al., 1986): If Re A(Azz) < 0, then the solu-
tion z and z of the original system (17), (18) is approximated,
for p sufficiently small, by

z(t)
2(t)

~ Z(t) (25)

- t—t
— Az Anz(t) + 24( u %)

(26)

where zy 1= z — Z.

Now consider systems containing saturating actuators. As
pointed out in Section 2, the reset windup phenomenon is ba-
sically caused by the relatively slow dynamics of the controller.
In such systems, the trajectory of the controller states evolves
differently from the trajectory of the states in the absence of
saturating actuators. It is thus desirable to retain the tra-
jectory of the controller states to the trajectory of the linear
system as closely as possible.

The closed-loop dynamics of the saturated system in (13)

can be rewritten as
zei = (F ~ MH)z.; — (G - ML)Cxy;
+(G — ML)(r — d)+ [M(I + LD) — G D]sat;(v)27)

Zpi = Ay + Bsati(v) (28)
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When the compensation matrix M is selected as (16), it can be

easily seen that, by direct substitution, the following is true:

= (P-QS 'R)zi + (T — QS ) (r-d)

ic,i
+QS 7Y Az, ; + Bsat;(v)) (29)

=(P-QSR)z,; + (T — QS7'U)(r - d) + Q57 '4,,, (30)

where
P := F-GD(I+LD)'H, (31)
Q := -G[I-D(+LD)1IC, (32)
R := B(I+LD)'H, (33)
$ = A-B(I+LD)'LC, (34)
T = G[I-D(UI+LD)'L), (35)
U := B(I+LD)y. (36)

Note that, in the singular perturbational method, the re-
duced model is obtained by neglecting the fast dynamics of the
system, which corresponds to the plant dynamics z,; in this

case. Thus

g, (P— QS 'R)z.; + (T — QS™U)(r — d). (37)

Remarks:

(fv) ¥ M is chosen as in (186), then the resulting dynam-
ics of the compensated controller has the form of the reduced
model of the unsaturated closed-loop system obtained by the
singular perturbational model reduction method. Therefore,
the compensated controller states, z.;, follow z. in the event
of saturation.

(v) In the proposed method, the virtual equilibrium point
Z.; of the saturated controller is the same as the equilibrium
point Z, of the unsaturated controller. In the singular pertur-
bational reduced model, Z.; is only approximately equal to Z..
Thus the additional term in {30), @S~1#,;, can be regarded

as a compensation term for this.

5. Stability analysis of the system

We have focused on the performance improvement of sat-
urated systems, but the main concern is whether the system
will remain stable under saturation. Although the saturation
is rather a simple nonlinearity, it is difficult to show the asymp-
totic stability of the control system. Thus it is customary to
treat the stability in the sense of Ly, (Campo and Morari, 1990;
Kapasouris et al., 1988). Lj, stable systems have the property
that inputs of bounded energy give rise to cutputs of bounded

energy. This section also addresses the Lz, stability.

Theorem 2.
Suppose that systems with saturating actuators satisfy As-
sumption 1. Then the overall system is stable if the system

matrix of the compensated controller, F — M H, is Hurwitz.



Proof.

Note that (13) includes the case of the absence of saturating
actuators (11) and sat;(-) is a bounded function. Therefore the
theorem follows with A,,: stable. W

As observed in Section 4, F — M H is the Schur comple-
ment of S in Ay, i.e., (4;/S). Thus the given system is stable
under saturation provided that the reduced model of the lin-
ear system is meaningful in the singular perturbational model
reduction method.

As previously stated, the behavior of the linear represen-
tation in (11} is well suited for the perturbational methods.
That is, the controller dynamics, z., is relatively slow com-
pared with the plant dynamics, z,. Hence the eigenvalues of
F— MH, when M is chosen as proposed, can approximate the
first ¢ eigenvalues of (11) provided the matrix S is Hurwitz.
This is always true when the controller has zero transmission
at infinite frequency.

Hitherto this paper has dealt with the two-step design ap-
proach, and has focused on the second stage, i.e., the problem
of performance improvement. But it is required, in the first
stage, that the controller is designed so that {A4;/5) is Hurwitz
to guarantee the stability of the system.

6. An illustrative example

In the process of LQG /LT R design, integrators are usually
added to facilitate the loop shaping procedure and eliminate
the zero steady-state errors. For the loop transfer recovery, the
low control weighting for the linear quadratic regulation prob-
lem is widely used. When saturating actuators exist, the reset
windup phenomenon can occur since the control input can be-
come very large as the control weighting parameter approaches
zero.

Consider a linearized state representation for a F-8 air-

craft(Kapasouris et al., 1988).
£p(t) = Azp(t) + Bu(t), (38)
y(t) = Cuaplt), (39)
u(t) = sat(v(t)), (40}
where
—0.8 —0.0006 —12 0
e 0014 -16.64 -32.2
1 -00001 ~15 0 ’
1 0 0 0
-19 -3
—0.66 —0.5 00 0 1] o
= , C= 41)
—0.16 —05 00 -1 1]
0 0

The LQG /LT R controller for the augmented plant can be

computed as follows.
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Krqe(s) = Geg(sI — Aa — BaGog — HyyCoa) " Hyp  (42)
where
0 0 I
4=1p 4 B“:[O . G=lo c] )

and Hy, and G, represent the filter gain matrix and the con-
trol gain matrix, respectively, and are given by(Kapasouris et
al., 1988)

~0.844 0.819
—11.54 13.47
~0.86  0.25
Hy = 44
fs —474 15 |’ (44)
468 —48
482 0.4
[ 5223 3.36 -73.1 00006 94.3 —1072 (15)
“ 3.36 297 2.19 0006 -908.9 921 |

Hence the actual controller including the integrators is

K(s) = T K1qa(s). (46)

And the state realization of (46) can be described by
z.(t) = Fz.(t)+ Ge(t), (47)
v(t) = Hz(1), (48)
e(t) = r(t)-u(t), (49)

where
Fe Ay — BaGey — HpyCq 0 ’
Geg
H

G= 0” , H=[o0 I]. (50)

The control inputs are limited by +25. Simulations are
performed with the reference inputs r(t) = (10 10)T. Note
that the responses of the saturated system without compensa-
tion scheme (Fig. 4) are degraded very much with respect to
those of the linear system (Fig. 3). Now we adopt the pro-

posed method to improve the performance. The compensation

Bl s
0] 70
s ]
= 84
5 5
E 4+
ER
2
14
D
0 2 4
TIME ( sec )
Figure 3. Output responses of the linear system.
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Figure 4. Output responses of the saturated system with-

out compensation.
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Figure 5. Output responses of the saturated system with

compensation.

matrix M is

( 5.8108  —0.0540 ]
12.6106  4.1657
23.1185  —1.3166
M —coA-lp— | 12383 699317 (51)
—246118 —0.2590
~174.9144 10.7056
0 0
L O 0 J

The stability of the system is guaranteed since F — M H is
Hurwitz. And the performance is improved quite a lot by the

compensation matrix M of (51) as can be seen in Fig. 5.

7. Concluding Remarks

In this paper, we have proposed a design technique of the
compensation matrix which results in effective saturation com-
pensation for MIMO control systems with saturating actua-
tors. The compensation matrix of the general ARW scheme
is derived explicitly by minimizing the distances between the
equilibrium points of the saturated and unsaturated system.

The resulting dynamics of the compensated controller ex-
hibits the reduced model form of the unsaturated system in the
sense of the singular perturbational method. Thus the states
of the compensated controller can be approximately restored
to the states of the unsaturated controller. This improves the
performance of the closed-loop system when the actuator sat-
urates.

The proposed method is meaningful even when the high

frequency gain of the controller is not full rank though the

234

conditioning technique can not be applied directly. The de-
sign procedure is simple in constrast to other compensation
schemes and the simulation example shows the effectiveness of

the proposed method.
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