• Title/Summary/Keyword: anti-vibration

Search Result 313, Processing Time 0.03 seconds

An Evaluation on Cutting Characteristics in Milling Process with Different Helix Angle Endmills (밀링가공에서 부등각 엔드밀의 절삭특성 평가)

  • 이상복;김원일;왕덕현;김실경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining tolerance. A conventional endmill which all low blades are $30^{\circ}$ helix angles and a different helix angle endmill which the opposite two blades are $30^{\circ}$ and the other opposites are different helix angles were studied. The cutting farce, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type A($25^{\circ}$$30^{\circ}$) appeared to bring the most satisfactory result.

Aa Evaluation on Cutting Characteristics in Milling process with Different Helix Angle Endmills (밀링가공에서 부등각 엔드밀의 절삭특성에 관한 고찰)

  • 이상복;김원일;왕덕현;김실경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.196-201
    • /
    • 2003
  • The experimental research was conducted to find an end mill with an ideal helix angle, which has a superior anti-vibration effect and a low machining-tolerance. A conventional endmill which all four blades are $30^\circ$ helix angles and a different helix angle endmill which the opposite two blades are $30^\circ$ and the other opposites are different helix angles were studied. The cutting force, machining tolerance and surface roughness were obtained. The AE signals appeared to have low values in up-milling rather than in down-milling. These are also appeared to have low values at low spindle revolutions rates. The cutting force values of Fxy and Fxyz were found to be increased according to the value of helix angle. In up-milling, it was difficult to find a definite tendency in machining tolerance, but in down-milling, machining tolerance of the different helix angle end mill was found to be lower than that of the convention end mill. There is a definite tendency that the surface roughness gets better as the RPM increases. In down-milling, Type $A(25^\circ+30^\circ)$ appeared to bring the most satisfactory result.

  • PDF

Safe Bike : Secure your Bicycle with this smart Arduino based GPS device

  • Godfrey, Daniel;Song, Mi-Hwa
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.16-26
    • /
    • 2016
  • This proposed project is about a bicycle anti theft devised system which helps people protect the bicycle from theft and helps to track the stolen bicycle's location using a smart phone. Safety bike uses two main devices to keep the bicycle secured, the vibration sensor and GPS sensor. The purpose of this project is to put all these small devices into one well connected system which will help the bicycle owner have more control over the security of his own bicycle. The whole system can be divided into two main parts. The first part is about the hardware development whereby all electronics components are connected via the circuit design using wire wrapping technique. This hardware part includes, a vibrations sensor, a GPS receiver, a toggle switch, LED light, Bluetooth and a buzzer. Wireless Bluetooth signals are used as the means of communication between the smartphone and the microcontroller. The second part is the software part which is being to program and control the whole system. The program is written using MikroBasic, a full-featured Basic compiler for microcontroller based systems. In conclusion, this system is designed to enable user to have control in securing his/her bicycle also being able to find and locate it at any time using GPS receiver and mobile android application.

Wear Progress Model by Impact Fretting in Steam Generator Tube (충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델)

  • Park, Chi-Yong;Lee, Jeong-Kun;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.817-822
    • /
    • 2008
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progress model for impact-fretting wear has been investigated and proposed. The proposed wear progress model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

Free vibration analysis of angle-ply laminated composite and soft core sandwich plates

  • Sahla, Meriem;Saidi, Hayat;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.663-679
    • /
    • 2019
  • In this work, a simple four-variable trigonometric shear deformation model with undetermined integral terms to consider the influences of transverse shear deformation is applied for the dynamic analysis of anti-symmetric laminated composite and soft core sandwich plates. Unlike the existing higher order theories, the current one contains only four unknowns. The equations of motion are obtained using the principle of virtual work. The analytical solution is determined by solving the eigenvalue problem. The influences of geometric ratio, modular ratio and fibre angle are critically evaluated for different problems of laminated composite and sandwich plates. The eigenfrequencies obtained using the current theory are verified by comparing the results with those of other theories and with the exact elasticity solution, if any.

High Speed Milling of Titanium Alloy (Ti 합금의 고속가공시 밀링특성에 관한 연구)

  • Chen, Ming;Lee, Young-Moon;Yang, Seung-Han;Jang, Seung-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.34-39
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. The chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number of shear ribbons and bigger shear angle than that at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability mot depression of temperature increment anti-fatigability as well as surface roughness. The burrs always exist both at low cutting speed and at high cutting speed. So the deburring process should be arranged for milling titanium alloy in my case.

The Development of Balancing Machine Using Hall Effect Sensor (홀 이펙트 센서를 이용한 밸런싱 머신 개발)

  • Jang, In-Hun;Nam, Won-Ki;Oh, Se-Hoon;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.209-214
    • /
    • 2006
  • The eccentricity of the rotor causes a rotary machine to unbalance and the balancing to correct or compensate this is very important not only for dust-proof and anti -noise design but also for stabilization and durability of the rotary machine. In this paper, for developing the balancing machine to find and compensate such eccentricity, we will propose new way of measuring eccentricity using hall effect sensor that is different from the way in a conventional balancing machine. And we will show that it is possible to make balancing machine more compactly and cheaply by experiment results using hall effect sensor to measure eccentricity. Moreover we try to control and monitor the balancing machine by personal computer through serial communication.

Study on Optimum Shape of Expansion Joint (신축조인트의 최적화형상에 대한 연구)

  • Han, Moonsik;Ahn, Junghyun;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.154-158
    • /
    • 2013
  • Expansion joint has been utilized in many areas including automotive bellows for exhaust system. Usage of expansion joint has been increased due to its inherent flexibility and excellent anti-vibration property. Simple shape of expansion joint is modeled to understand the behavior of joint system. 27 design cases using 3 design factors with 3 levels are constructed by design of experiment. Each case is simulated to find the most influential design factors. Response for this study, maximum stress in the expansion joint, has been used to determine main design factors of joint. Among the 3 design factors, factor B has affected greatly a response in the formation of optimum shape of joint. Also, interaction factor, $A{\times}B$, has also showed its influence to the response of joint. This study showed that design of experiment combined with finite element analysis could be used in the design decision process effectively in the design of expansion joint.

A Study on Modeling of Unmanned Gantry Crane (1) (UGC 모델링에 관한 연구(I))

  • 박경택;김두형;신영재;박찬훈;김용선
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.333-344
    • /
    • 1999
  • Currently many studies on the unmanned gantry crane for the automated container terminal are accomplished. This is needed for the development of large scale, automation, high speed, unmanned system and information system in port facility. In order to do efficient container handling job in port yard, the automated handling system is well adapted to the job environments and all-season weather, In order to realize the automatic and unmanned system for container handling job, the required functions and main structure system are studied. The major problems of operation of the conventional gantry crane are that the vibration of gantry structure body is occurred by operation and that high-speed and precision position-velocity control and the capability to dope to the external disturbances caused by the wind, rain, fog and job environments. In this paper, the fundamental study for establishment of the concept and the dynamic modelling of the major sub system of the unmanned gantry crane is presented. These studies are useful for design and manufacturing of the new concept model of the unmanned gantry crane for efficient operation of the automated container terminal.

  • PDF

Driving Characteristic of Ultrasonic Linear Motor with V-type (V-형 선형 초음파 모터의 구동 특성)

  • Jeong, Seong-Su;Seo, San-Dong;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.274-275
    • /
    • 2006
  • A linear ultrasonic motor was designed by a combination of the longitudinal and bending mode. Linear ultrasonic motors are based on an elliptical motion on the surface of elastic body, such as bar or plates. The corresponding eigen-mode of one resonance frequency can be excited twice at the same time with a phase shift of 90 degrees in space and time. That is excite symmetric and anti-symmetric modes. Then it determines the thrust and speed of the motor. Linear ultrasonic motors are investigated experimentally in according to be fabricated a general classification to motor structure and material characteristic. There was the first to simulate as use of finite element analysis ANSYS 9.0. The AL-T2W8-ARM14-LEG18-ANGLE80 motor has a maxim efficiency 17 [%] under the speed 0.14 [m/s], thrust 345 [gf] and preload 280 [gf], operating frequency is 57.6 [kHz].

  • PDF