• Title/Summary/Keyword: anti-tumorigenic effect

Search Result 19, Processing Time 0.035 seconds

Histone Deacetylase-3/CAGE Axis Targets EGFR Signaling and Regulates the Response to Anti-Cancer Drugs

  • Kim, Hyuna;Kim, Youngmi;Goh, Hyeonjung;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.229-241
    • /
    • 2016
  • We have previously reported the role of miR-326-HDAC3 loop in anti-cancer drug-resistance. CAGE, a cancer/testis antigen, regulates the response to anti-cancer drug-resistance by forming a negative feedback loop with miR-200b. Studies investigating the relationship between CAGE and HDAC3 revealed that HDAC3 negatively regulated the expression of CAGE. ChIP assays demonstrated the binding of HDAC3 to the promoter sequences of CAGE. However, CAGE did not affect the expression of HDAC3. We also found that EGFR signaling regulated the expressions of HDAC3 and CAGE. Anti-cancer drug-resistant cancer cell lines show an increased expression of $pEGFR^{Y845}$. HDAC3 was found to negatively regulate the expression of $pEGFR^{Y845}$. CAGE showed an interaction and co-localization with EGFR. It was seen that miR-326, a negative regulator of HDAC3, regulated the expression of CAGE, $pEGFR^{Y845}$, and the interaction between CAGE and EGFR. miR-326 inhibitor induced the binding of HDAC3 to the promoter sequences in anti-cancer drug-resistant $Malme3M^R$ cells, decreasing the tumorigenic potential of $Malme3M^R$ cells in a manner associated with its effect on the expression of HDAC3, CAGE and $pEGFR^{Y845}$. The down-regulation of HDAC3 enhanced the tumorigenic, angiogenic and invasion potential of the anti-cancer drug-sensitive Malme3M cells in CAGE-dependent manner. Studies revealed that $PKC{\delta}$ was responsible for the increased expression of $pEGFR^{Y845}$ and CAGE in $Malme3M^R$ cells. CAGE showed an interaction with $PKC{\delta}$ in $Malme3M^R$ cells. Our results show that HDAC3-CAGE axis can be employed as a target for overcoming resistance to EGFR inhibitors.

Prominent IL-12 Production and Tumor Reduction in Athymic Nude Mice after Toxoplasma gondii Lysate Antigen Treatment

  • Pyo, Kyoung-Ho;Jung, Bong-Kwang;Xin, Chun-Feng;Lee, You-Won;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.6
    • /
    • pp.605-612
    • /
    • 2014
  • Toxoplasma gondii is an intracellular protozoan parasite that causes a Th1 cellular immunity. Our previous study showed that T. gondii lysate antigen (TLA) treatment in S180 tumor-bearing mice resulted in tumor reduction by suppressing CD31 expression, a marker of angiogenesis. In the present study, to investigate tumor suppressive effect of TLA under the absence of T lymphocytes, athymic nude mice were compared with euthymic mice in the anti-tumorigenic effect triggered by TLA in CT26 tumors. According to the results, intratumorally injected TLA reduced tumor growth and TIMP-1 level, a metastatic marker, in both euthymic and athymic mice. TLA treatment led to a sharp increase in IL-12 expression in serum cytokine profiling of athymic mice, and increased MyD88 signals in macrophages derived from the bone marrow, implying the activation of innate immunity. The selective induction of IL-12 by TLA treatment had an anti-tumorigenic effect.

Flavonoid Fraction Purified from Rhus verniciflua Stokes Actively Inhibits Cell Growth Via Induction of Apoptosis in Mouse Tumorigenic Hepatocytes

  • Lee, Jeong-Chae
    • Natural Product Sciences
    • /
    • v.10 no.2
    • /
    • pp.74-79
    • /
    • 2004
  • Dietary flavonoids are currently receiving considerable attention in developing novel cancer-preventive approaches because of their potential capacities to actively induce apoptosis of cancer cells. In our previous report, a flavonoid fraction, which consisted mainly of protocatechuic acid, fustin, fisetin, sulfuretin, and butein and named RCMF (RVS chloroform-methanol fraction), was prepared from a crude acetone extract of Rhus verniciflua Stokes (RVS) that is traditionally used as food additive and herbal medicine. In this study, we evaluated the effects of the RCMF on cell proliferation and apoptosis using SV40-transformed tumorigenic hepatocytes, BNL SV A.8. Tritium uptake assay showing the proliferative capacity of the cells was strongly suppressed in the presence of RCMF. This anti-proliferative effect was further confirmed through trypan blue exclusion. RCMF-mediated suppression of cell growth was verified to be apoptotic, based on the increase in DNA fragmentation, low fluorescence intensity in nuclei after propidium iodide staining, and the appearance of DNA laddering. Collectively, this study demonstrated that RCMF can be approached as a potential agent that is capable of significantly inhibiting cell growth of hepatic cancer cells.

Caffeic Acid Phenethyl Ester Induces the Expression of NAG-1 via Activating Transcription Factor 3 (ATF3를 통한 caffeic acid phenethyl ester에 의한 NAG-1 유전자의 발현 증가)

  • Park, Min-Hee;Chung, Chungwook;Lee, Seong Ho;Baek, Seung Joon;Kim, Jong Sik
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a transforming growth factor beta (TGF-${\beta}$) superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. In the present study, we investigated if caffeic acid phenethyl ester (CAPE) derived from propolis could induce the expression of anti-tumorigenic gene NAG-1. Our results indicate that CAPE significantly induced NAG-1 expression in a time- and concentration-dependent manner in HCT116 cells. We also found that CAPE induced NAG-1 expression in a concentration-dependent manner in another human colorectal cancer cell line, LOVO. In addition, CAPE triggered apoptosis, which was detected with Western blot analysis using poly-(ADP-ribose) polymerase antibody. NAG-1 induction by CAPE was not dependent on transcription factor p53, which was confirmed with Western blot analysis using p53 null HCT116 cells. The luciferase assay results indicated that the new cis-elements candidates were located between -474 and -1,086 of the NAG-1 gene promoter. CAPE dramatically induced activating transcription factor 3 (ATF3) expression, but not cAMP response element-binding protein (CREB), which shares the same binding sites with ATF3. The co-transfection experiment with pCG-ATF3 and pCREB showed that only ATF3 was associated with NAG-1 up-regulation by CAPE, whereas CREB had no effect. In conclusion, the results suggest that CAPE could induce the expression of anti-tumorigenic gene NAG-1 mainly through ATF3.

Suppressed CD31 Expression in Sarcoma-180 Tumors after Injection with Toxoplasma gondii Lysate Antigen in BALB/c Mice

  • Pyo, Kyoung-Ho;Jung, Bong-Kwang;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.2
    • /
    • pp.171-174
    • /
    • 2010
  • The anti-tumorigenic effects of Toxoplasma gondii (RH) antigens were studied in a murine sarcoma-180 tumor model. To determine the anti-tumor effects, the reduction in tumor size and expression of CD31 (an angiogenesis marker in the tumor tissue) were examined after injection of BALB/c mice with T. gondii lysate antigen (TLA) or formalin-fixed, proliferation-inhibited, T. gondii tachyzoites. Tumors were successfully produced by an intradermal injection of sarcoma-180 cells with plain Matrigel in the mid-backs of mice. After injection with TLA or formalin-fixed T. gondii tachyzoites, the increase in tumor size and weight nearly stopped while tumor growth continued in control mice that were injected with PBS. CD31 expression in TLA-treated or formalin-fixed T. gondii-injected mice was lower than the control mice. Accordingly, the present study shows that the treatment of mice with formalin-fixed T. gondii or TLA in the murine sarcoma-180 tumor model results in a decrease of both tumor size and CD31 expression.

miR-335 Targets SIAH2 and Confers Sensitivity to Anti-Cancer Drugs by Increasing the Expression of HDAC3

  • Kim, Youngmi;Kim, Hyuna;Park, Deokbum;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.562-572
    • /
    • 2015
  • We previously reported the role of histone deacetylase 3 (HDAC3) in response to anti-cancer drugs. The decreased expression of HDAC3 in anti-cancer drug-resistant cancer cell line is responsible for the resistance to anti-cancer drugs. In this study, we investigated molecular mechanisms associated with regulation of HDAC3 expression. MG132, an inhibitor of proteasomal degradation, induced the expression of HDAC3 in various anti-cancer drug-resistant cancer cell lines. Ubiquitination of HDAC3 was observed in various anti-cancer drug-resistant cancer cell lines. HDAC3 showed an interaction with SIAH2, an ubiquitin E3 ligase, that has increased expression in various anti-cancer drug-resistant cancer cell lines. miRNA array analysis showed the decreased expression of miR-335 in these cells. Targetscan analysis predicted the binding of miR-335 to the 3'-UTR of SIAH2. miR-335-mediated increased sensitivity to anti-cancer drugs was associated with its effect on HDAC3 and SIAH2 expression. miR-335 exerted apoptotic effects and inhibited ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines. miR-335 negatively regulated the invasion, migration, and growth rate of cancer cells. The mouse xenograft model showed that miR-335 negatively regulated the tumorigenic potential of cancer cells. The down-regulation of SIAH2 conferred sensitivity to anti-cancer drugs. The results of the study indicated that the miR-335/SIAH2/HDAC3 axis regulates the response to anti-cancer drugs.

Use of Cellulose and Recent Research into Butyrate (섬유소의 이용과 butyrate의 최근 연구)

  • Yeo, Tae Jong;Choi, In Soon;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1571-1586
    • /
    • 2012
  • On earth, there are about 5,400 kinds of mammals, of which about 1,000 kinds are herbivores. Among herbivores, about 250 kinds are known to be ruminants. As for cattle and sheep, which are ruminants, fermentation takes places mainly in their rumen; in contrast, for pigs and men, which are non-ruminants, fermentation takes place mainly in their caecum, colon, and rectum. As for the kind and dominance of rumen microorganisms, Bacteroidetes account for 51% and Firmicutes for 43%. As for the dominance of the large intestine microorganisms in men, Firmicutes account for 65% and Bacteroidetes for 25%. Cell wall components are decomposed by microorganisms, and short chain fatty acids (SCFAs) are generated through fermentation; the ratio of acetate, propionate, and butyrate generate is 60:25:15. Butyrate absorbed through the primary butyrate transporter MCT1 (mono carboxylate transports-1) in the intestines activates such SCFA receptors as GPR43 and GPR41. Butyrate has a strong anti-tumorigenic function. Butyrate is characterized by the fact that it has an effect on many cancer cells, contributes to the coordination of functions in the cells, and induces cancer apoptosis. Butyrate activates caspase but inhibits the activity of HDAC (histone deacetylase), so as to induce apoptosis. In addition, it increases p53 expression, so as to induce cell cycle arrest and apoptosis. Anti-inflammation actions of SCFA include the reduction of IL-8 expression in intestinal epithelial cells, the inhibition of NO synthesis, and the restraint of the activity of NF-${\kappa}B$ (nuclear factor ${\kappa}B$), so as to suppress the occurrence of cancers caused by inflammation. Butyrate plays an important role in maintaining physiological functions of intestinal mucous membranes and is used as a cure for inflammatory bowel disease (IBD).

Houttuynia cordata Thunberg exhibits anti-tumorigenic activity in human gastric cancer cells

  • Hong, Se Chul;Eo, Hyun-Ji;Song, Hoon-Min;Woo, So-Hee;Kim, Mi-Kyeong;Lee, Jin-Wook;Seo, Jeong-Min;Park, Su-Bin;Eom, Jung-Hye;Koo, JinSuk;Jeong, JinBoo
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.155-160
    • /
    • 2013
  • Objectives : Gastric cancer is a leading cause of cancer-related deaths, worldwide. Houttuynia cordata Thunberg (H. cordata) has been used as a medicinal plants and it has an anti-cancer activity in human colorectal cancer and leukemic cancer. However, the potential anti-cancer activity and mechanisms of H. cordata for human gastric cancer cells have not been tested so far. Thus, this study examined the biological effects of H. cordata on the human gastric cancer cell line SNU-1 and AGS. Methods : Inhibition of cell proliferation and cell cycle by H. cordata was carried out by MTT assay and Muse cell cycle analysis and the expressions of protein associated with apoptosis and cell cycle regulation were investigated with Western blot analysis. Results : In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by H. cordata in a time and dose dependent manner, Inhibition of cell proliferation by H. cordata was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bax to Bcl-2 by H. cordata. Also, H. cordata regulated the expression of cell cycle regulatory proteins such as pRb, cyclin D1, cyclin E, CDK4, CDK2, p21 and p15. Conclusion : The antiproliferative effect of H. cordata on SNU-1 and AGS gastric cancer cells revealed in this study suggests that H. cordata has intriguing potential as a chemopreventive or chemotherapeutic agent.

Radioprotective Effects of Propolis on the Mouse Testis Exposed to X-ray. (프로폴리스가 X-선에 노출된 마우스 정소에 미치는 방사선 방어 효과)

  • Ji, Tae-Jung;Kim, Jong-Sik;Jeong, Hyung-Jin;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.664-670
    • /
    • 2007
  • The propolis is natural product produced by honeybees and is known to have many biologically useful properties such as anti-microbial, anti-oxidative and anti-tumorigenic activity. However, its radio-protective property has not been well studied. To investigate radio-protective effect of propolis on mouse testis, mice were supplemented with propolis after 5 Gy irradiation. The histological changes of testis were detected by TEM. The results indicate that propolis may protect tissue deformation which is induced by 5 Gy of ionizing radiation. Furthermore, to elucidate the potential molecular mechanisms involved in radio-protective property of propolis, we performed microarray experiments using oligo DNA microarray. We found 65 up-regulated genes and 224 down-regulated genes, whose expression levels were affected more than 2-fold by propolis treatment in mice irradiated at 5 Gy. We confirmed microarray data with reverse transcription-PCR using gene specific primers. The results of RT-PCR are highly correlated with those of microarray. These results may help understanding molecular mechanisms of radioprotective effects by propolis in mouse model.

Anti-tumorigenic Effect of DIM-pPhBr and DIM-pPhF Originating from Cruciferous Vegetables in KB Human Oral Squamous Cell Carcinoma Through Apoptotic Cell Death (사람구강편명상피암세포주인 KB세포에서 십자화과채소 유래물질인 DIM-pPhBr과 DIM-pPhF의 세포사멸유도를 통한 항종양효능에 관한 연구)

  • Cho, Hyun-Tai;Choi, Eun-Sun;Cho, Nam-Pyo;Cho, Sung-Dae
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.398-402
    • /
    • 2011
  • Cruciferous vegetables including diindolylmethane (DIM) have been shown to have anticancer activity. Especially, DIM-pPhBr and DIM-pPhF used in this study was reported to have more effective and less toxic effects than DIM. However, there is no report presenting their anti-tumorigenic activity in oral cancer. In the present study, we examined the effects of DIM-pPhBr and DIM-pPhF on the cell proliferation and apoptosis in KB human oral cancer cells. DIM-pPhBr and DIM-pPhF decreased cell proliferation and induced apoptosis evidenced by western blot analysis, DAPI staining and sub-$G_1$ population. This provides the first evidence that DIM-pPhBr and DIM-pPhF originating from Cruciferous vegetables induce apoptotic cell death in human oral cancer cells to inhibit cancer cell proliferation.