• Title/Summary/Keyword: anti-tumor effects

Search Result 1,463, Processing Time 0.024 seconds

The Effect of Inhibition of Heme Oxygenase-1 on Chemosensitivity of Cisplatin in Lung Cancer Cells (폐암세포주에서 Heme Oxygenase-1의 억제가 Cisplatin의 항암제 감수성에 미치는 영향)

  • Kim, So-Young;Kim, Eun-Jung;Jang, Hye-Yeon;Hwang, Ki-Eun;Park, Jung-Hyun;Kim, Hwi-Jung;Jo, Hyang-Jeong;Yang, Sei-Hoon;Jeong, Eun-Taik;Kim, Hak-Ryul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.1
    • /
    • pp.33-42
    • /
    • 2007
  • Background: Heme oxygenase-1 (HO-1) is known to modulates the cellular functions, including cell proliferation and apoptosis. It is known that a high level of HO-1 expression is found in many tumors, and HO-1 plays an important role in rapid tumor growth on account of its antioxidant and antiapoptotic effects. Cisplatin is a widely used anti-cancer agent for the treatment of lung cancer. However, the development of resistance to cisplatin is a major obstacle to its use in clinical treatment. We previously demonstrated that inhibiting HO-1 expression through the transcriptional activation of Nrf2 induces apoptosis in A549 cells. The aim of this study was to determine of the inhibiting HO-1 enhance the chemosensitivity of A549 cells to cisplatin. Materials and Methods: The human lung cancer cell line, A549, was treated cisplatin, and the cell viability was measured by a MTT assay. The change in HO-1, Nrf2, and MAPK expression after the cisplatin treatment was examined by Western blotting. HO-1 inhibition was suppressed by ZnPP, which is a specific pharmacologic inhibitor of HO activity, and small interfering RNA (siRNA). Flow cytometry analysis and Western blot were performed in to determine the level of apoptosis. The level of hydrogen peroxide ($H_2O_2$) generation was monitored fluoimetrically using 2',7'-dichlorofluorescein diacetate. Results: The A549 cells showed more resistance to the cisplatin treatment than the other cell lines examined, whereas cisplatin increased the expression of HO-1 and Nrf2, as well as the phosphorylation of MAPK in a time-dependent fashion. Inhibitors of the MAPK pathway blocked the induction of HO-1 and Nrf2 by the cisplatin treatment in A549 cells. In addition, the cisplatin-treated A549 cells transfected with dither the HO-1 small interfering RNA (siRNA) or ZnPP, specific HO-1 inhibitor, showed in a more significantly decrease in viability than the cisplatin-only-treated group. The combination treatment of ZnPP and cisplatin caused in a marked increase in the ROS generation and a decrease in the HO-1 expression. Conclusion: Cisplatin increases the expression of HO-1, probably through the MAPK-Nrf2 pathway, and the inhibition of HO-1 enhances the chemosensitivity of A549 cells to cisplatin.

Antioxidant and Inhibitory Effects of Korean Panax ginseng Extract on Pro-inflammatory Mediators in LPS-stimulated RAW264.7 Macrophages (산양삼(Korean Panax ginseng) 추출물의 항산화 효과 및 LPS로 염증이 활성화된 RAW 264.7 대식세포에서의 염증매개물질 억제효과)

  • Kim, Ye-Jin;Son, Dae-Yeul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.10
    • /
    • pp.1371-1377
    • /
    • 2012
  • Biological activities of Korean Panax ginseng 55% ethanol extract (KPGE) were investigated. The measured total polyphenol content of KPGE was 357.45 mg/100 g. KPGE showed the highest ${\alpha},{\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzo-thiazoline-6-sulfonic acid (ABTS) radical scavenging activities of 80% and 86% at 1,000 ${\mu}g/mL$, respectively. DPPH and ABTS radical scavenging activities significantly increased in a KPGE concentration-dependent manner. SOD-like activity of KPGE (1, 10, and 100 ${\mu}g/mL$) increased from 22% up to 33% at KPGE concentrations of 500 and 1,000 ${\mu}g/mL$. KPGE treatment significantly suppressed the generation of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and cytokines (tumor necrosis factor-alpha: TNF-${\alpha}$, interleukin-6: IL-6, interleukin-$1{\beta}$: IL-$1{\beta}$), in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. KPGE demonstrated strong anti-inflammatory activity that reduced NO and $PGE_2$ production in LPS-stimulated RAW 264.7 cells. Even low concentrations of KPGE (1 and 10 ${\mu}g/mL$) reduced $PGE_2$ and NO production in RAW 264.7 macrophages without LPS-stimulation, respectively. At concentrations of 100, 500, and 1,000 ${\mu}g/mL$, TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 production were significantly suppressed. The results of our study suggest the potential of Korean Panax ginseng as an excellent antioxidant substance for inhibiting inflammatory mediators. Therefore, Korean Panax ginseng (KPGE) may be used as a therapeutic approach to various inflammatory diseases.

Proanthocyanidins Suppresses Lipopolysaccharide-stimulated Inflammatory Responses via Heme Oxygenase-1 Induction in RAW264.7 Macrophages (프로안토시아니딘의 항염증효과)

  • Cheon, Hye-Jin;Park, Sun Young;Jang, Hee-Ji;Cho, Da-Young;Jung, Jiwon;Park, Gimin;Jeong, Kyeong Mi;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.484-491
    • /
    • 2019
  • Proanthocyanidins are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, immunomodulation, DNA repair, and antitumor activity. Among immune cells, macrophages are crucial players in a variety of inflammatory responses to environmental conditions. However, it has been widely reported that macrophages cause chronic inflammation and are involved in a variety of diseases, such as obesity, diabetes, metabolic syndrome, and cancer. In this study, we report the suppressive effect of proanthocyanidins via the heme oxygenase-1 (HO-1)-related system, on the immune response of the LPS-stimulated mouse macrophage cell line RAW264.7. Increased HO-1 expression at mRNA and protein levels were found in proanthocyanidins-treated RAW264.7 cells. Further, proanthocyanidins enhanced nuclear factor-erythroid 2-related factor 2 translocation into the nucleus. RAW264.7 cells were treated with lipopolysaccharide (LPS) with or without proanthocyanidins, and inflammatory mediator expression levels were assessed. Proanthocyanidins treatment resulted in the attenuation of nitric oxide production and inducible nitric oxide synthase expression in LPS-stimulated RAW264.7 cells. In addition, mRNA and protein expression of proinflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin-6, was inhibited by proanthocyanidins treatment in LPS-stimulated RAW264.7 cells. These findings support proanthocyanidins as a promising anti-inflammatory agent.