• Title/Summary/Keyword: anti-rolling system

Search Result 53, Processing Time 0.024 seconds

A Decentralized Brake System for Railway Rolling Stocks Using the Adaptive Sliding Mode Control Scheme (적응 슬라이딩 모드 제어 기법을 이용한 철도차량 대차단위 제동시스템)

  • Park, Sung-Hwan;Lee, Ji-Min;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1005-1013
    • /
    • 2009
  • In this paper, the performance improvement of a decentralized brake system for railway rolling stocks is investigated. In order to verify the effectiveness of the decentralized brake system, it is compared to the truck unit brake system which has only one control unit per a truck. The adaptive sliding mode control scheme is used to realize a robust anti-slip brake control system. Through computer simulations, it is verified that the decentralized brake system has better braking performance than the truck unit brake system.

A Study on the Development of Anti-Seasickness Bed (승선감 개선을 위한 Anti-Seasickness Bed 개발에 관한 연구)

  • Kim, Y.B.;Lee, K.S.;Suh, J.H.;Choi, W.Y.;Chae, G.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.96-101
    • /
    • 2006
  • In ship operation the consequence of roll and pitchingmotion can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization and trimming control system design have been performed and good results have been achieved where the stabilizing fins, tanks, rudders and flaps are used. However the ultimate objective of such approach should be focused on improving the boarding sensitivity. But there may exist many unsolved problems, for examples, ship control performance degradation and increasing of system complexity. So, the achieved control performance could not give us enough comfortable boarding sensitivity where the residual rolling and pitching motion are main drawbacks. To get rid of these disadvantages, the main hull control systems design approach has been considered using semiactive absorber. In this system, dampers, spring, dynamic dampers and control system with sensors are incorporated. In our system considered in this study, just two motors and control system with sensors are used for the bed. And the control system can be installed on each bed. So, we can control every bed on the specified control objective respectively. Above all, the good advantages of this system are the facts followed from simple idea and usefulness. Of course the structural modifications are needed. Considering disturbances, we design control system and verify the usefulness of developed system from the experimental study.

  • PDF

The Development of a Balancing Control System for the Anti-Rolling Rail of a Delivery Ship (용달선의 횡 동요를 억제하기 위한 곡선레일의 수평유지장치 개발)

  • Byun, J.H.;Yeo, D.J.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2004
  • A delivery ship is used to handle the cargo with the crane to/from the ships. The ship is inclined in the direction of a cargo which is hung on a crane. In this case, a arc shaped rail should be in the equilibrium state to get good anti rolling performance. In this study, a device and control algorithm are developed to take accurate and quick equilibrium of the rail. The device is composed of a hinged immovable support and two screw jacks. And the control algorithm demands two controllers. One controller is designed such that the screw jack 1 and 2 follow the position reference signal generated by a tilt sensor. The other controller of two degree of freedom is designed to remove the synchronous error occurred between jack 1 and jack 2. The simulation results show that the desirable control performance is achieved.

  • PDF

Hardware-In-the-Loop Simulation for Development of Fin Stabilizer

  • Yoon, Hyeon Kyu;Lee, Gyeong Joong
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.10-15
    • /
    • 2013
  • A ship cruising in the ocean oscillates continuously due to wave action. In order to reduce the ship's roll, we developed a fin stabilizer as an anti-rolling device for a 500-ton-class high-speed marine vessel. During the development phase, it was necessary to set up control gains for the motion and hydraulic systems and assess the effectiveness of the anti-rolling performance on the ground. For this reason, a Target Simulator, which simulated the ship's motion, was given operator inputs such as the engine telegraph and waterjet deflection angle, and generated roll using a one-degree-of-freedom motion base. Hardware-In-the-Loop Simulation (HILS) was performed using the Target Simulator in order to confirm the various logics of the developed fin stabilizer, select initial control gains, and estimate the anti-rolling performance. In conclusion, it was confirmed that HILS was very helpful to develop the fin stabilizer because it could reduce the number of sea trial tests that were needed and could find many malfunctions in the factory a priori.

On the Performance of the Anti-Rolling Tank(1) (감요수조(減搖水槽)의 성능(性能)에 관(關)하여(1))

  • Bong-Koo,Woo;Jong-Do,Koo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.2
    • /
    • pp.35-44
    • /
    • 1971
  • In terms of this paper, concerning primarily with the U-tube tank stabilizer, the authors' aim is to clarify and consolidate the theory as it has been developed thus far, and to provide with the certain additions which will make it more complete, more accurate, and more practical. And then we can know that the effect of the vertical tank position from the C.G., $a_{st}=1-w^2/{w^2}_{st}$, is very important, on account for the fact that the position factor, $a_{st}$, increase when the anti-rolling tank attaches to higher position vertically, but $a_{st}$ does not increase in proportion to the distance of the tank position. Measuring many characteristic coefficients by experiment, in the equation of the ship-tank system motion, such as the inertia coefficient, the damping coefficient, the natural frequency and so on, they can also give a guess that the higher position will accompany the non-linear motion of the tank water, but the non-linear effect will decrease the tank ability. In this study, they deal with not only the optimum damping coefficient of tank, which has very simply been expressed by the strength ratio, $\lambda$, but also the effect of the tank top, which has experimentally been treated when the water has hit the tank top. As this result, we can immediately find that the ability of the anti-rolling tank decrease at w/ws=0.9 generally low frequency.

  • PDF

Experimental Study on the Period Control of an U-tube Type Anti-Rolling Tank by using a Double Layer Duct (이중덕트를 이용한 U자형 감요수조의 주기조절 실험 연구)

  • Ju, Youngkwang;Kim, Yong Jig;Ha, Youngrok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.135-142
    • /
    • 2015
  • The Anti-Rolling Tank(ART) has an advantage over the other roll stabilizing devices, when ship is staying and working at one site of sea. An important design point of ART is the tank tuning, that is, matching the tank natural period to the ship's roll natural period. Since the load condition and consequently the roll natural period of ship is to be changed widely, the natural period of ART also has to be changed widely. In case of the existing U-tube type ART with a single layer duct, the tank natural period can be changed in a relatively narrow range. This paper suggests a new U-tube type ART system using a double layer duct to enable wide change of ART natural period. Through the roll experiments performed in regular beam waves for a box-type model ship, it is shown that the double layer duct ART has about two times wider period range and a better reducing effect of roll magnitude than the single layer duct ART.

Simulations for an ASCU of a Train Brake including a Pneumatic Model (공압모델이 포함된 철도차량 제동 ASCU 시뮬레이션)

  • Kim, Ho-Yeon;Kang, Chul-Goo
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93-97
    • /
    • 2010
  • Wheel skids may occur during train operations due to low adhesion at the wheel-rail contact point abnormally, and the skids, in turn, result in flats appearing on the wheels, which affect safety and ride comfort significantly. Thus, anti-skid control has a crucial role for safe braking and prevention from flats that could cause a disastrous train accident. This paper presents simulation studies on an anti-skid control unit (ASCU) with a brake system of a rolling stock including a pneumatic model for brake power supply and dump valve operation.

  • PDF

A Position of a Anti-Air Weapon System for Fighting Ship's Self-Defence Effectiveness Enhancement (대공방어무기체계의 교전 효과도 향상을 위한 함상 배치 위치 분석)

  • Hwang, Soo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.41-47
    • /
    • 2006
  • Naval combat system is total management system integrating a ship and several weapon system functions. For the mission of a ship, naval combat system manages features and constraints of each weapon system. Proper treats of each weapon system's conditions guarantee effective performances of naval combat system. In this paper, the relationship of anti-air weapon system's on board position and self-defence effectiveness against anti-surface missiles is studied

On the Performance of the Anti-Rolling Tank(2) (감요수조(減搖水槽)의 성능(性能)에 관(關)하여(2))

  • Bong-Koo,Woo;Chul-Hwan,In;Jong-Do,Koo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.1
    • /
    • pp.17-26
    • /
    • 1974
  • In this paper, authors investigate and analyze the effects of the anti-rolling tank which are calculated in accord with the tank damping coefficients by the computer, and which are represented with both the tank water's saturating state and the normal state in the irregular waves by analog computer. As the results of these studies, we immediately find that the tank optimum damping coefficient $b_{to}$, is 0.3877 due to calculating $\mu$-values, analyzing and comparing inclinations of $\mu$-values, and that although a nonlinear elements are included in the response character of the ship-tank system, the output is no longer Gaussian distribution, even when the sea waves are considered as Gaussian, and can not be expressed by the spectral forms which premise the superposition theory.

  • PDF

A Fundamental Study on Lower Duct Flow of passive anti-rolling tanks System (수동형 감요수조의 하부덕트 유동에 관한 기초연구)

  • Lee, Cheol-Jae;Lim, Jeong-Sun;Jung, Han-Sic;Jung, Hyo-Min
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.265-269
    • /
    • 2006
  • Anti-Roll Tanks, also called Sloshing Tanks, is a rather common and sometimes an efficient method of limiting the roll angles. The important parameters, when considering using anti-roll tanks, are positioning, size, duct area, flow control device etc. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics around control damper and inlet area of duct for three kind of inclined angle $(\alpha=0^*,\;10^*\;and\;20^*)$. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal boundaries between flowing and stagnant zones and to extract velocity profiles at any selected sections of the lower duct for passive anti-rolling tanks system.

  • PDF