• Title/Summary/Keyword: anti-oxidant enzymes

Search Result 80, Processing Time 0.019 seconds

Effect of Ulmus macrocapa Ethanolic Extracts on Anti-oxidant Activity and Melanin Synthesis in B16F1 Cells (B16F1세포에서 항산화 활성 및 멜라닌 합성에 대한 유백피 에탄올 추출물의 효능)

  • Kwon, Eun-Jeong;Park, Hye-Jung;Kim, Moon-Moo;Lee, Kyeong Rok;Hong, Il;Lee, Do Gyeong;Oh, Yunghee
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.946-951
    • /
    • 2014
  • Melanin plays a key role in the protection of skin from ultraviolet light that generates reactive oxygen species (ROS), such as superoxide, hydroxyl radical, singlet oxygen and hydrogen peroxide. However, the ROS leading to the oxidation of lipids, proteins and DNA are involved in the overproduction of melanin that is known to cause melasma, age spots and freckles. Among the herb medicines, Ulmus macrocarpa used in this study was reported to contain flavonoids as a main component. The aim of this study is to investigate the whitening and anti-oxidant effects of Ulmus macrocarpa ethanolic extracts (UMEE) in B16F1 cells. UMEE below $3.12{\mu}g/ml$ did not show cytotoxicity. In an anti-oxidant experiment, UMEE showed not only high reducing power and scavenging activity on DPPH, but it was also observed that UMEE exhibit an inhibitory effect on lipid peroxidation. UMEE did not display an inhibitory effect on tyrosinase activity in vitro. However, UMEE inhibited melanin synthesis in B16F1 cells. In addition, UMEE reduced the expression levels of tyrosinase and tyrosinase-related protein-2 (TRP-2), which are key enzymes in melanogenesis. These results indicate that UMEE exert a whitening effect through the inhibition of both tyrosinase and TRP-2 expressions as well as anti-oxidant activity, suggesting that UMEE could have the functional potential for a whitening effect on the skin.

Enhanced Extraction of Bioactive Compounds from Bee Pollen by Wet-grinding Technology (벌 화분에서 습식 나노화 공정에 의한 유효성분의 추출)

  • Choi, Yun-Sik;Suh, Hwa-Jin;Chung, Il Kyung
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.651-656
    • /
    • 2016
  • Bee pollen is produced by honeybees and is considered one of the most balanced and nourishing nutritional supplements available. Historically, bee pollen has been prescribed for its healing properties and consumed for its high-energy supply. Recent research has provided evidence that bee pollen has diverse biological activities, such as anti-oxidant, anti-inflammatory, anti-bacterial, and even anti-cancer effects. However, the outer membrane of the pollen grain, exine, is highly resistant to most acidic solutions, high pressure, and even digestive enzymes, and the resulting low bioavailability limits its nutritional and clinical applications. This study applied a wet-grinding method to destroy the exine effectively, and it then examined the pollen's enhanced biological activity. First, microscopic observations provided strong evidence that wet grinding destroyed the exine time-dependently. In addition, the content of polyphenols, well-known ingredients of bee pollen and used as internal standards for the quality control of commercial pollen preparations, increased up to 11-fold with wet grinding. Further, the anti-oxidant activity demonstrated on the ABTS anti-oxidant assay, as well as the DPPH radical scavenging assay, was also dramatically increased. Together, the results presented here support a new technology by which bee pollen can be used as a resource for medical, nutritional, and cosmetic applications.

Suppressive effect of Spirulina fusiformis in relation to lysosomal acid hydrolases, lipid peroxidation, antioxidant status, and inflammatory mediator TNF-alpha on experimental gouty arthritis in mice

  • Rasool, Mahaboob Khan;Sabina, Evan Prince;Nithya, Pichandy;Lavanya, Kumar
    • Advances in Traditional Medicine
    • /
    • v.9 no.2
    • /
    • pp.164-173
    • /
    • 2009
  • The anti-inflammatory effect of Spirulina fusiformis on monosodium urate crystal-induced inflammation in mice has been investigated and compared with the non-steroidal anti-inflammatory drug Indomethacin. The paw volume, lysosomal enzyme activities, lipid peroxidation, anti-oxidant status and inflammatory mediator tumour necrosis factor-$\alpha$ were studied in control and monosodium urate crystal-induced mice after oral administration of Spirulina platensis in an experimental model for gouty arthritis. In the induced mice, the levels of lysosomal enzymes, inflammatory mediator tumour necrosis factor-$\alpha$, lipid peroxidation and the paw volume increased significantly, whereas the antioxidant status decreased when compared to control mice. $\beta$-glucuronidase and lactate dehydrogenase level were also found to be increased in untreated monosodium urate crystal-incubated polymorphonuclear leucocytes. After the oral administration of Spirulina fusiformis, the physical and biochemical changes observed in monosodium urate crystal-induced animals were significantly restored to near normal levels. The results clearly indicated the anti-inflammatory role of Spirulina fusiformis, a promising drug for gouty arthritis.

Extracts from Gracilaria vermiculophylla Prevent Cellular Senescence and Improve Differentiation Potential in Replicatively Senescent Human Bone Marrow Mesenchymal Stem Cells (홍조류인 Gracilaria vermiculophylla 추출물에 의한 노화 골수유래 중간엽줄기세포의 항노화 및 분화능력 개선 효과)

  • Jeong, Sin-Gu;Cho, Tae Oh;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1042-1047
    • /
    • 2018
  • The red algae Gracilaria vermiculophylla is widespread on seashores worldwide and has been used as food in Asian countries. Previous studies have reported that extracts of Gracilaria red algae have beneficial anti-oxidant and anti-inflammatory effects. The present study examined the anti-senescence effects of Gracilaria vermiculophylla extracts (GV-Ex) in replicatively senescent human bone marrow mesenchymal stem cells (hBM-MSCs). GV-Ex pretreatment improved the cellular viability of hBM-MSCs that had been injured by oxidative stress. These effects of GV-Ex were confirmed by MTT assay and immunoblot analysis using the apoptotic proteins p53 and cleaved caspase-3. The reactive oxygen species (ROS) levels were examined in long-term cultured Passages 17 (P-17) mesenchymal stem cells (MSC) and compared to P-7 MSC. The ROS accumulation was greater in the P-17 than in the P-7. However, these increased ROS levels in the P-17 were decreased significantly after treatment with GV-Ex, and restoration of the levels of the anti-oxidant enzymes SOD1, SOD2, and CAT was also observed under these conditions. In addition, P-17 hBM-MSC treated with GV-Ex had decreased levels of the senescence proteins p53, p21, and p16. The results show that the ability of P-17 hBM-MSC to differentiate into osteocytes and adipocytes was improved by GV-Ex treatment, suggesting that GV-Ex ameliorates the functional decline of senescent stem cells.

Neuroprotective and Anti-oxidant Effects of Gastrodiae Rhizoma Extracts against Hydrogen Peroxide-induced Cytotoxicity in SH-SY5Y Cells (산화적 스트레스에 대한 천마 추출물의 신경세포 보호 및 항산화 효과)

  • Kang Beom, Kwon;Ha Rim, Kim;Ye Seul, Kim;Eun Hee, Park;Han Byeol, Choi;Do Gon, Ryu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.6
    • /
    • pp.209-212
    • /
    • 2022
  • We recently reported that Gastrodia elata extracts (GEE) had an effects to protect against lipopolysaccharide-induced cognitive impairment in vivo model. In this study, we investigated the neuroprotective effects and the mechanism of action of GEE in hydrogen peroxide (H2O2)-induced cell death of SH-SY5Y human neuroblastoma cell. The SH-SY5Y cells were divided into five groups, including control(non-treated group), 100 μM H2O2, 100, 200, 500 ㎍/㎖ GEE+ 100 μM H2O2 groups. Pre- and co-treatment with GEE prevented cell death induced by 100 μM H2O2 for 24 h in SH-SY5Y cells. Our findings also showed that anti-oxidants enzymes (Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase) were up-regulated by 100 μM H2O2. But GEE suppressed H2O2-induced anti-oxidants enzymes decrease in a dose-dependent manner. Treatment with GEE also inhibited phosphorylation of eukaryotic initiation factor-2α (eIF-2α) and p38 by H2O2. Taken together, the neuroprotective effects of GEE in terms of recovery of antioxidant enzymes expression, down-regulation of eIF-2α and p38 phosphorylation, and inhibition of cell death are associated with reduced oxidative stress in SH-SY5Y cells.

Chronic Effects of Copper on Antioxidant Enzymes and Acetylcholinesterase Activities in Rock bream Oplegnathus fasciatus (구리에 노출된 돌돔(Oplegnathus fasciatus)의 항산화 효소 및 acetylcholinesterase 활성의 변화)

  • Min, EunYoung;Kang, Ju-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.874-881
    • /
    • 2014
  • A laboratory experiment was conducted to determine chronic effects of waterborne copper exposure on rock bream Oplegnathus fasciatus using a panel of enzymes. The activities of the following biochemical biomarkers were determined at different concentrations of $CuSO_4$ for 10 and 20 days: alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) in plasma; antioxidant enzymes including glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in liver and gills; and acethylcholinesterase (AChE) in brain and muscle. After exposure to two $CuSO_4$ concentrations (200 and $400{\mu}g/L$), the activities of plasma ALT in the fish showed a tendency to increase with AST and LDH, depending on $CuSO_4$ concentration. Additionally, GSH levels and SOD activities significantly increased, depending on $CuSO_4$ concentrations in liver and gills. This involved the inactivation of reactive molecules formed during oxidative stress, which could provide protection against oxidative damage induced by $CuSO_4$. However, GPx and AChE activities significantly decreased with $CuSO_4$ in liver and gills. In conclusion, these enzymes may represent convenient biomarkers for monitoring heavy metal pollution in coastal areas. Such chronic exposure studies are necessary for improving our understanding of complementary or deleterious effects of pollutants, and for developing metal toxicity biomarkers.

Phytochemical and Pharmacological Investigations on Moringa peregrina (Forssk) Fiori

  • Elbatran, Seham A.;Abdel-Salam, Omar M.;Abdelshfeek, Khaled A.;Nazif, Naglaa M.;Ismail, Shams I.;Hammouda, Faiza M.
    • Natural Product Sciences
    • /
    • v.11 no.4
    • /
    • pp.199-206
    • /
    • 2005
  • Investigation of M. peregrina aerial parts revealed the isolation and identification of 4-flavonoidal compounds, quercetin, quercetin-3-0-rutinoside (rutin), chrysoeriol-7-0-rhamnoside 6,8,3',5'-tetramethoxy apigenin. The compounds were identified by TLC, PC, MS, and $H^1-NMR$. The fatty acids and unsaponifiable matter were studied. The $LD_{50}$ for M. peregrina was 113.4 mg/100g b.wt. Repeated intraperitoneal injection of 1/20 and 1/10 $LD_{50}$ (5.67 mg and 11.34 mg/100g b.wt.) of defatted alcoholic of M. peregrina for 30 days induced significant decrease in serum glucose, liver enzymes and lipid components. M. peregrina administered i.p., 30min prior to carrageenan at the above doses significantly inhibited the rat paw oedema response, In acute pain models, namely, the acetic acid-induced writing and hot-plate assay, M. peregrina exhibited marked analgesic properties. In addition, M. peregrina administered at time of indomethacin injection inhibited the development of gastric lesions in rats.

Characterization of anti-oxidative effects of Mori Cortex Radicis

  • Noh, Won-Ki;Park, Jin-Baek;Kim, Sung-Jin
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.271-277
    • /
    • 2010
  • We tested to determine if Mori Cortex Radicis extract has antioxidant activities and its potential mechanism of action was explored. Anti-oxidative effects were tested by measuring free radical and nitric Oxide (NO) scavenging activity, and reducing power. Since iNOS and COX-2 are important enzymes responsible for the production of free radicals in the cell, Mori Cortex Radicis extract was tested as to whether it could inhibit iNOS and COX-2 expression in LPS stimulated Raw cells. 70% methanolic extract of Mori Cortex Radicis exerted significant DPPH free radical and NO scavenging activities. In addition, the Mori Cortex Radicis extract exerted dramatic reducing power with maximal activity observed at 1 mg/ml (11-fold over control). Production of iNOS induced by LPS was significantly inhibited by the Mori Cortex Radicis extract, suggesting it could inhibit NO production by suppressing iNOS expression. COX-2 induced by LPS was also significantly inhibited by the Mori Cortex Radicis extract. The extract contains well known antioxidant components including phenolics, flavonoids and anthocyanin at the concentration of 0.23 mg/g, 42.97 mg/g and 12.08 mg/g, respectively. These results suggest that 70% methanolic extract of Mori Cortex Radicis exerts significant anti-oxidant activity via inhibiting iNOS and COX-2 induction.

Effects of Purslane Extract on Obesity and Diabetes in High-Fat Diet-Induced Obese Mice

  • Kang, Kwang-Soon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.7
    • /
    • pp.61-66
    • /
    • 2016
  • The frequency of obesity has risen dramatically in recent years but only few safe and effective drugs are currently available. In addition, obesity can induce type 2 diabetes (T2DM), hyperlipidemia and fatty liver disease. Recently, protective effect of purslane extract (PE) on obesity has been reported, but little is known about the role and mechanism of PE in obesity. This study aimed to evaluate the effect of PE on obesity and diabetes in obese mice. In addition, the effect of PE was compared with anti-obesity and diabetes drugs. High-fat diet (HFD)-induced obese mice were treated for 8 weeks with drugs as follows: PE, orlistat, metformin, voglibose or pioglitazone. While PE mixed with normal diet did not have any effects on BW in non-obese mice, PE mixed with HFD significantly reduced BW gain, insulin resistance, and glucose intolerance, without affecting food intake and appetite in obese mice. The effect was comparable to the effects of anti-obesity and diabetes drugs. Furthermore, PE significantly increased the activity of hepatocellular anti-oxidant enzymes, leading to protection of liver from oxidative stress in obese mice. These results suggest that PE treatment may be a useful tool for preventing obesity and complication of obesity.

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.