• Title/Summary/Keyword: anti-invariant surfaces

Search Result 3, Processing Time 0.018 seconds

A SHORT NOTE ON BIHARMONIC SUBMANIFOLDS IN 3-DIMENSIONAL GENERALIZED (𝜅, 𝜇)-MANIFOLDS

  • Sasahara, Toru
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.723-732
    • /
    • 2016
  • We characterize proper biharmonic anti-invariant surfaces in 3-dimensional generalized (${\kappa}$, ${\mu}$)-manifolds with constant mean curvature by means of the scalar curvature of the ambient space and the mean curvature. In addition, we give a method for constructing infinity many examples of proper biharmonic submanifolds in a certain 3-dimensional generalized (${\kappa}$, ${\mu}$)-manifold. Moreover, we determine 3-dimensional generalized (${\kappa}$, ${\mu}$)-manifolds which admit a certain kind of proper biharmonic foliation.

SURFACES WITH CONSTANT GAUSSIAN AND MEAN CURVATURES N THE ANTI-DE SITTER SPACE ℍ31

  • Ugur Dursun
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.249-266
    • /
    • 2024
  • In this work, we study time-like and space-like surfaces invariant by a group of translation isometries of the half-space model ℋ31 of the anti-de Sitter space ℍ31 . We determine all such surfaces with constant mean curvature and constant Gaussian curvature. We also obtain umbilical surfaces of ℋ31.

A NOTE ON INDECOMPOSABLE 4-MANIFOLDS

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.817-828
    • /
    • 2005
  • In this note we show that there is an anti-symplectic involution $\sigma\;:\;X\;\to\;X$ on a simply-connected, closed, non-Kahler and symplectic 4-manifold X with a disjoint union of Riemann surfaces ${\amalg}^n_{i=1}{\Sigma}_i,\;n\;{\ge}\;2$ as a fixed point set. Also we show that its quotient X/$\sigma$ is homeomorphic to $\mathbb{CP}^2{\sharp}r\mathbb{CP}^2$ but not diffeomorphic to $\mathbb{CP}^2{\sharp}r\mathbb{CP}^2,\;r\;=\;b_2^-(X/{\sigma})$.