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SURFACES WITH CONSTANT GAUSSIAN AND MEAN

CURVATURES N THE ANTI-DE SITTER SPACE H3
1

Uǧur Dursun

Abstract. In this work, we study time-like and space-like surfaces in-
variant by a group of translation isometries of the half-space model H3

1

of the anti-de Sitter space H3
1. We determine all such surfaces with con-

stant mean curvature and constant Gaussian curvature. We also obtain

umbilical surfaces of H3
1.

1. Introduction

We study time-like and space-like surfaces invariant by a group of translation
isometries in the half-space model H3

1 of the anti-de Sitter 3-space H3
1. Such

surfaces are translation surfaces. A translation surface in the Euclidean is
obtained by a translation of a curve along another curve, and it is locally
written as a sum of two curves of the ambient space. Translations surfaces in
the Euclidean 3-surface are well-known and recently have been studied in some
other ambient spaces too, for instance, see [3, 4, 6, 10, 11, 13, 17].

Minimal translations surfaces in different ambient spaces such as in Heisen-
berg group, hyperbolic space, Sol3 and H2×R space were studied in [6, 10, 11,
13, 17].

Translation surfaces in the Euclidean and Minkowski spaces having constant
Gaussian curvature were studied in [8]. In [15], Šipuš investigated translation
surfaces in a simply isotropic space having constant isotropic Gaussian or mean
curvature, and in [1], Belarbi studied constant extrinsically Gaussian curvature
translation surfaces invariant under the 1-parameter group of isometries in the
3-dimensional Heisenberg group. Also, in [9], Lopez described all parabolic
surfaces in H3 with constant Gaussian curvature. A parabolic surface in the
hyperbolic space H3 is a surface which is invariant by a group of parabolic
isometries of H3, in particular, it is a translation surface in a direction.

In [7], J. P. Lambert studied Lorentzian invariant space-like surfaces of con-
stant mean curvature in the anti-de Sitter space H3

1(−c2) of constant sectional
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curvature −c2 by considering a flat-chat model of H3
1, and he constructed sur-

faces of revolution with constant mean curvature H = c and maximal surfaces
of revolution in H3

1.
In [14], A. Seppi and E. Trebeschi developed a half-space model Hp,q for the

(p+q)-dimensional pseudo-hyperbolic space Hp,q of signature (p, q) with q ≥ 1.
They showed that there exists an isometric imbedding of this space into Hp,q

and its image is the complement of a totally geodesic degenerate hyperplane in
Hp,q. They also described full isometry group of Hp,q. The half-space model
for the anti-de Sitter space H2,1 was used in [2], also the half-space model of
the de Sitter space Sp,1 was studied in [12].

In this work we consider the half-space model H3
1 = H2,1 of the anti-de

Sitter space H3
1, and motivated by the work done in [9] we study time-like and

space-like surfaces invariant by a group of translation isometries in H3
1 having

constant mean curvature and constant Gaussian curvature. As the horizontal
coordinate plane of H3

1 is the Minkowski 2-plane we consider only time-like and
space-like horizontal directions for the translation surfaces in H3

1. We obtain
the Gaussian and mean curvatures of these translation surfaces in H3

1, and then
we determine the generating curve of surfaces by solving differential equations
when the mean and Gaussian curvatures are constants. The surfaces that we
obtained include flat surfaces and surfaces with zero mean curvatures. Also,
we determine umbilical surfaces of H3

1.

2. Preliminaries

We consider the upper half-space model H3
1 = H2,1 for the anti-de Sitter

space H3
1 which is defined as the open half-space {(x, y, z) ∈ R3

1|z > 0} equipped

with the Lorentzian metric g =
dx2 − dy2 + dz2

z2
, of constant curvature −1.

The boundary of H3
1, denoted by ∂H3

1, is the Minkowski 2-plane {z = 0}.
By following Lemma 2.6 and Theorem 7.1 in [14], the full isometry group

of half-space model H3
1 is given by the group

G = {(x, y, z) 7→ λ(A(x, y) + (x0, y0), z)|λ > 0, A ∈ O(1, 1), (x0, y0) ∈ R⊕ R}

from which we can have the isometries of the form: T̂ (x, y, z) = λ(x, y, z),

(homothety) T̃ (x, y, z) = (A(x, y), z) (rotation), and T (x, y, z) = (x + x0, y +
y0, z) (translation).

Let ξ ∈ ∂H3
1 be a space-like vector, and consider the horizontal translation T

in a horizontal space-like direction ξ. Then, the set Gξ = {Ta(p)|a ∈ R, Ta(p) =
p + aξ, p = (x, y, z) ∈ H3

1} is a subgroup of isometries of H3
1, that is, it is a

group of translation isometries, and the orbits are horizontal straight lines
parallel to ξ. Without loss of generality, we assume that horizontal space-like
vector ξ that defines the group Gξ is the space-like vector ξ = (1, 0, 0). Let
Pξ = {(0, y, z)|z > 0} which is a vertical geodesic time-like plane orthogonal
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to ξ. A surface Mq with the index q, q = 0, 1, invariant by Gξ intersects Pξ

in a curve α which is called the generating curve of Mq. The index q depends
on the curve α, i.e. q = 0 if α is space-like, and q = 1 if α is time-like. Let
α(s) = (0, y(s), z(s)) be parameterized by arc length parameter s with respect
to the Minkowski metric whose domain J is an open interval including zero.

Then, we have z′
2 − y′

2
= ε = ±1, and a parameterization of Mq is

(1) φ(s, x) = (x, y(s), z(s)), s ∈ J, x ∈ R.

Similarly, let η ∈ ∂H3
1 be a time-like vector. We consider the horizontal

translation in a horizontal time-like direction η. Then, the set Gη = {Ta(p)|a ∈
R, Ta(p) = p + aη, p = (x, y, z) ∈ H3

1} is a subgroup of translation isometries
of H3

1. Without loss of generality, we assume that horizontal time-like vector
η that defines the group Gη is the time-like vector η = (0, 1, 0). Let Pη =
{(x, 0, z)|z > 0} which is a vertical geodesic space-like plane orthogonal to η.

A time-like surface M̃1 invariant by Gη intersects Pη in a space-like curve γ

which is the generating curve of M̃1. Let γ(s) = (x(s), 0, z(s)) be parameterized
by arc length parameter s with respect to the Euclidean metric whose domain
of definition J is an open interval including zero. Then, a parameterization of

M̃1 is

(2) ψ(s, y) = (x(s), y, z(s)), s ∈ J, y ∈ R.

Let ∇̃ denote the connection of H3
1. Let ∂x = ∂

∂x , ∂y = ∂
∂y , ∂z = ∂

∂z denote

coordinate vector fields onH3
1. Then, the vectors E1 = z∂x, E2 = z∂y, E3 = z∂z

with g(E1, E1) = g(E3, E3) = 1, g(E2, E2) = −1 form a pseudo-orthonormal
frame on H3

1. In this frame, non-zero covariant derivatives of H3
1 are obtained

as follows

∇̃E1
E1 = E3, ∇̃E1

E3 = −E1, ∇̃E2
E2 = −E3, ∇̃E2

E3 = −E2.

2.1. Translation in a space-like direction in H3
1

Let us consider the surface Mq : φ(s, x) in H3
1 defined by (1). Then, the

coordinate vector fields of the surface Mq are φs(s, x) =
y′(s)
z(s) E2 +

z′(s)
z(s) E3 and

φx(s, x) =
1

z(s)E1, and the coefficients of the first fundamental form induced by

φ are E = g(φs, φs) =
z′2−y′2

z2 = ε
z2 , F = g(φs, φx) = 0, G = g(φx, φx) =

1
z2

from whichMq is a regular surface if z′ ̸= y′ on J . We can choose a unit normal
vector to Mq in H3

1 as n = z′E2 + y′E3, and the signature of n is εn = −ε.
By using the Gauss-Weingarden formulas it is seen that the vectors

e1 = y′(s)E2 + z′(s)E3 and e2 = E1

with the signatures ε1 = ε and ε2 = 1, respectively, are the principal directions
of the shape operator An for Mq, that is,

An(e1) = [y′ + εz(y′z′′ − z′y′′)]e1 and An(e2) = y′e2.
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From the Gauss equation we have the Gaussian curvature K as follows

K =− 1 + εn
g(An(e1), e1)g(An(e2), e2)− g(An(e1), e2)

2)

g(e1, e1)g(e2, e2)− g(e1, e2)2

=− 1− ε[y′
2
+ εzy′(y′z′′ − z′y′′)]

=− 1− εy′
2 − zy′(y′z′′ − z′y′′)

=ε(zz′′ − z′
2
).(3)

We introduce the function θ(s) such that

y′(s) = sinh θ(s), z′(s) = cosh θ(s) if ε = 1

and
y′(s) = cosh θ(s), z′(s) = sinh θ(s) if ε = −1.

Without loss of generality we may assume that

(4) y(0) = 0, z(0) = 1, θ(0) = θ0.

Hence, z′(0) = cosh θ0 when ε = 1 and z′(0) = sinh θ0 when ε = −1. In the case
ε = 1, θ(s) is the angle between the space-like vectors α′(s) and ∂z. If θ ≡ 0,
then α(s) is a part of vertical straight line in the yz-plane, and the surface M0

is the vertical space-like geodesic plane y = 0 with z > 0. If ε = −1, then
θ(s) is the angle between the time-like vectors α′(s) and ∂y. If θ ≡ 0, then
α(s) is the time-like horizontal line passing through (0, 0, 1) with the direction
α′ = (0, 1, 0), and the surface M1 is the horizontal time-like plane z = 1 which
is a horosphere in H3

1.

2.2. Umbilical Surfaces Mq in H3
1

In this section we study umbilical surfaces invariant by translation isometries
in H3

1. A surface Mq in H3
1 is umbilical if ε1g(An(e1), e1) = ε2g(An(e2), e2),

that is,
εz(y′z′′ − z′y′′) + y′ = y′

which yields θ′(s) = 0 for ε = ∓1, i.e. θ = θ0 is a constant.
Therefore, for ε = 1 and using the initial condition (4) we have

y(s) = (sinh(θ0))s, z(s) = (cosh(θ0))s+ 1

with s > −1/ cosh(θ0). Without loss of generality we may take θ0 ≥ 0.
These are the parametric equations of the space-like straight line α(s) =
(0, (sinh(θ0))s, (cosh(θ0))s + 1). For this generating curve the Gaussian cur-
vature of the space-like umbilical surface M0 is K = − cosh2(θ0) which is a
nonzero constant. Considering the initial condition (4) the space-like umbilical
surfaces are the vertical space-like plane y = 0 with K = −1 if θ0 = 0, or a
space-like surface with K = − cosh2(θ0) < −1 if θ0 > 0.

Now, for ε = −1 and using the initial condition (4) we have

y(s) = (cosh(θ0))s, z(s) = (sinh(θ0))s+ 1
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with s > −1/ sinh(θ0), that is, the time-like straight line

α(s) = (0, (cosh(θ0))s, (sinh(θ0))s+ 1).

For this generating curve the Gaussian curvature of the time-like umbilical
surface M1 is K = sinh2(θ0) which is a constant, and it is zero only for θ0 =
0. Having the initial condition (4) the time-like umbilical surfaces are the
horosphere z = 1 with K = 0 if θ0 = 0, or a time-like surface with K =
sinh2(θ0) > 0 if θ0 > 0.

Therefore we state

Theorem 2.1. A surface Mq invariant by a group of translation in H3
1

defined by (1) with a generating curve α(s) = (0, y(s), z(s)) is umbilical if and
only if

α(s) = (0, (sinh(θ0))s, (cosh(θ0))s+ 1) when q = 0, or
α(s) = (0, (cosh(θ0))s, (sinh(θ0))s+ 1) when q = 1.
Moreover,

1. M0 is the vertical totally geodesic space-like plane y = 0 with K = −1
when θ0 = 0, or it is a space-like surface with K = − cosh2 θ0 for θ ̸= 0;

2. M1 is the horosphere z = 1 with K = 0 when θ0 = 0, or it is a time-like
surface with K = sinh2 θ0 for θ ̸= 0.

2.3. Surfaces Mq in H3
1 with constant mean curvature

In this section we study surfaces Mq invariant by translation isometries in
H3

1 with constant mean curvature.
The mean curvature H of the surface Mq defined by (1) in H3

1 is given by

H =
εn
2
[ε1g(An(e1), e1) + ε2g(An(e2), e2)],

that is,

H = −ε
2
[εz(y′z′′ − z′y′′) + 2y′].

Thus, Mq has a constant mean curvature H = H0 if and only if the functions
y(s) and z(s) satisfy the differential equation

(5) εz(y′z′′ − z′y′′) + 2y′ = −2εH0.

Using z′
2 − y′

2
= ε, we have

zz′′ − 2(z′
2 − ε) = 2εH0

√
z′2 − ε.

If we put U(z) = z′(s), then we have z′′ = U(z)dU(z)
dz , and hence the above

differential equation turns to

zU
dU

dz
= 2

√
U2 − ε(

√
U2 − ε+ εH0)

and its solution yields

(6) U2 = z′
2
= ε+ (cz2 − εH0)

2,
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where c is a constant. If c = 0, then, by an appropriate isometry of H3
1 we can

write α(s) = (0, sH0, 1+ s
√
H2

0 + ε), where |H0| ≥ 1 when ε = −1. Therefore,
the surfaceMq defined by this generating curve α has constant mean curvature
H0, and it is umbilical.

Now, let c ̸= 0. From(6) and z′
2 − y′

2
= ε we obtain that

z′(s) = ∓
√
ε+ (cz2 − εH0)2 and y′(s) = ∓(cz2 − εH0).

By an appropriate isometry of H3
1, we can consider only plus sign in the above

equations. Hence, we write

dy

dz
=

cz2 − εH0√
ε+ (cz2 − εH0)2

from which we have

y(z) =

∫ z

1

ct2 − εH0√
ε+ (ct2 − εH0)2

dt

for z > 0 in some open interval containing z = 1. Thus, we parameterize the
generating curve α as

α(z) =
(
0,

∫ z

1

ct2 − εH0√
ε+ (ct2 − εH0)2

dt, z
)

with the initial condition α(1) = (0, 0, 1) for z > 0 in some open interval. For
ε = 1, the function y(z) is defined for all z > 0, but for ε = −1 we determine
the domain of definition for α depending on H0 and c such that it contains
z = 1.
Case 1. H0 < 0. It follows from α′(z) that |cz2 +H0| > 1, that is, cz2 +H0 <
−1 or cz2 +H0 > 1:

1.1) For cz2 +H0 < −1, we have

1.1-a)
√

−1−H0

c < z <∞ when c < −1−H0 and −1 ≤ H0 < 0, or

1.1-b) 0 < z <
√

−1−H0

c when 0 < c < −1−H0 and H0 < −1, or

1.1-c) 0 < z <∞ when c = 0 and H0 < −1;

1.2) For cz2 +H > 1, we have
√

1−H0

c < z <∞ when c > 1−H0.

Case 2. H0 = 0. From α′(z) we have |cz2| > 1 that gives
√

1
|c| < z <∞ when

|c| > 1.
Case 3. H0 > 0. From α′(z) we have that |cz2+H0| > 1, that is, cz2+H0 < −1
or cz2 +H0 > 1:

3.1) For cz2+H0 < −1, we have
√

−1−H0

c < z <∞ when c < −(1+H0) < 0;

3.2) For cz2 +H > 1, we have
3.2-a) 0 < z <∞ when c = 0 and H0 > 1, or when c > 0 and H0 ≥ 1, or

3.2-b) 0 < z <
√

1−H0

c when 1−H0 < c < 0 and H0 > 1, or
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3.2-c)
√

1−H0

c < z <∞ when c > 1−H0 and 0 < H0 ≤ 1.

For the infinite intervals, when z → ∞, the second component of α′ ap-
proaches to −1 or 1 according to c is negative or positive, respectively. There-
fore, α is asymptotic to a line of the form β(t) = (0,±t+ b, t) which has a null
direction in the zy-plane, where b is a non-zero constant.

Theorem 2.2. Let M0 be a space-like surface invariant by a group of
translation isometries in H3

1 defined by (1) with the generating curve α. Then,
M0 has constant mean curvature H0 if and only if α is given by

α(z) =
(
0,

∫ z

1

ct2 −H0√
1 + (ct2 −H0)2

dt, z
)

for 0 < z <∞, where c is a zero constant.

Theorem 2.3. LetM1 be a time-like surface invariant by a group of trans-
lation isometries in H3

1 defined by (1) with the generating curve α. Then, M1

has constant mean curvature H0 if and only if α is given by

α(z) =
(
0,

∫ z

1

ct2 +H0√
(ct2 +H0)2 − 1

dt, z
)
,

where c is a constant, and

1. for H0 < 0, α(z) is defined on the interval
√

−1−H0

c < z < ∞ when

c < −1 − H0 and −1 ≤ H0 < 0, or 0 < z <
√

−1−H0

c when 0 < c <

−1 − H0 and H0 < −1, or 0 < z < ∞ when c = 0 and H0 < −1, or√
1−H0

c < z <∞ when c > 1−H0;

2. for H0 = 0, α(z) is defined on the interval
√

1
|c| < z <∞ when |c| > 1;

3. for H0 > 0, α(z) is defined on the interval
√

−1−H0

c < z < ∞ when

c < −(1+H0) < 0, or 0 < z <∞ when c = 0 and H0 > 1, or when c > 0

and H0 ≥ 1, or 0 < z <
√

1−H0

c when 1 −H0 < c < 0 and H0 > 1, or√
1−H0

c < z <∞ when c > 1−H0 and 0 < H0 ≤ 1.

All these intervals contain z = 1.

2.4. Surfaces Mq in H3
1 with constant Gaussian curvature

In this section we study surfaces Mq invariant by a group of translation
isometries in H3

1 with constant Gaussian curvature.
By considering (3), a surface Mq in H3

1 defined by (1) with the generating
curve α has constant Gaussian curvature K = K0 if the z(s) component of the
profile curve α(s) satisfies the equation

(7) ε(zz′′ − z′
2
) = K0,
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and the y(s) component of α(s) is given by y(s) =
∫ s

0

√
z′2(τ)− εdτ. The first

integral of the above differential equation is obtained as

(8) z′
2
= Cz2 − εK0,

where C is a constant. By taking the derivative of this with respect to s, we
get

(9) z′′ = Cz.

We investigate the solution of (9) according the values of ε, C, and K0.

Let ε = 1. For s = 0, we have C = cosh2 θ0 +K0 from (4) and (8). Thus,
we have the followings:

Case 1.1. C = K0 + cosh2 θ0 < 0, that is, K0 < − cosh2 θ0. Then, by using
(4), the solution of (9) yields

z(s) =

√
K0

C
cos(

√
−Cs−B),

where B = arccos
√

C
K0

, and hence y(s) =
∫ s

0

√
−K0 sin

2(
√
−Cτ −B)− 1dτ,

where s1 = 1√
−C

(
arcsin 1√

−K0
+ arccos

√
C
K0

)
≤ s < 1√

−C

(
π
2 + arccos

√
C
K0

)
.

The curve α is decreasing on the interval and has a vertical tangent at s1.

Case 1.2. C=0, that is, K0 = − cosh2 θ0. Then, the solution of (8) by using
(4) gives z(s) = (cosh θ0)s + 1, and hence y(s) = (sinh θ0)s. The space-like
surface M0 with the generating curve α(s) = (0, (sinh θ0)s, (cosh θ0)s + 1) is
umbilical that was studied in Section 2.2.

Case 1.3. C = K0 + cosh2 θ0 > 0 and −1 ≤ K0 < 0. Then, by using (4), the
solution of (9) gives

z(s) =

√
−K0

C
sinh(

√
Cs+B),

where B = arcsinh
√

C
−K0

, and hence y(s) =
∫ s

0

√
−K0 cosh

2(
√
Cτ +B)− 1dτ

which is defined if
√
Cs+B ≥ arccosh( 1√

−K0
) that holds when −1 ≤ K0 < 0.

Hence we have s2 = 1√
C

(
arccosh 1√

−K0
− arcsinh

√
C

−K0

)
≤ s <∞. It can be

seen that lims→∞
dz
dy = 1 which implies that the graph of α is asymptotic to a

line with the direction t⃗ = (0, 1, 1), and also it has a vertical tangent when s
approaches to s2 from the right.

Case 1.4. C = cosh2 θ0 > 0 and K0 = 0. Then, by using (4), the solution of
(8) gives

z(s) = e(cosh θ0)s,



Surfaces with constant Gaussian and mean curvatures 257

and hence

y(s) =

∫ s

0

√
(cosh2 θ0)e2(cosh θ0)τ − 1dτ

=
1

cosh θ0

(√
(cosh2 θ0)e2(cosh θ0)s − 1− arctan

√
(cosh2 θ0)e2(cosh θ0)s − 1

)
− 1

cosh θ0
(sinh θ0 − arctan(sinh θ0))

for s3 = − ln(cosh θ0)
cosh θ0

≤ s < ∞. For this case we again have lims→∞
dy
dz = 1

which implies that the graph of α is asymptotic to a line with the direction
t⃗ = (0, 1, 1), and also it has a vertical tangent when s approaches to s3 from
the right.

Case 1.5. C = K0+cosh2 θ0 > 0 and K0 > 0. Then, by using (4), the solution
of (9) yields

z(s) =

√
K0

C
cosh(

√
Cs+B),

where B = arccosh
√

C
K0

, and hence y(s) =
∫ s

0

√
K0 sinh

2(
√
Cτ +B)− 1dτ for

s4 ≤ s <∞, where s4 = 1√
C

(
arcsinh 1√

K0
− arccosh

√
C
K0

)
≤ 0. The graph of

α is also asymptotic to a line with the direction t⃗ = (0, 1, 1), and also it has a
vertical tangent when s approaches to s4 from the right.

Therefore we have

Theorem 2.4. Let M0 be a space-like surface invariant by a group of
translation isometries in H3

1 defined by (1) with the generating curve α. Then,
M0 has constant Gaussian curvature K0 if and only if the y and z components
of α are given by one of the followings:

1. For K0 < − cosh2 θ0,

y(s) =

∫ s

0

√
−K0 sin

2(
√
−Cτ +B)− 1dτ, z(s) =

√
K0

C
cos(

√
−Cs+B),

where s1 = 1√
−C

(
arcsin 1√

−K0
+ B

)
≤ s < 1√

−C

(
π
2 + B

)
, C = K0 +

cosh2 θ0 < 0 and B = arccos
√

C
K0

. The curve α is decreasing on the

interval and has a vertical tangent when s approaches to s1 from the
right.

2. For K0 = − cosh2 θ0, y(s) = (sinh θ0)s, z(s) = (cosh θ0)s + 1. For this
generating curve, M0 is umbilical.

3. For −1 ≤ K0 < 0,

y(s) =

∫ s

0

√
−K0 cosh

2(
√
Cτ +B)− 1dτ, z(s) =

√
−K0

C
sinh(

√
Cs+B)
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for s2 = 1√
C

(
arccosh 1√

−K0
− arcsinh

√
C

−K0

)
≤ s < ∞, where C =

K0+cosh2 θ0 > 0 and B = arcsinh
√

C
−K0

. The graph of α is asymptotic

to a line with the direction t⃗ = (0, 1, 1), and it has a vertical tangent
when s approaches to s2 from the right.

4. For K0 = 0,

y(s) =
1

cosh θ0

(√
(cosh2 θ0)e2(cosh θ0)s − 1− arctan

√
(cosh2 θ0)e2(cosh θ0)s − 1

)
− 1

cosh θ0
(sinh θ0 − arctan(sinh θ0)),

z(s) = e(cosh θ0)s

for s3 = − ln(cosh θ0)
cosh θ0

≤ s < ∞. The graph of α is asymptotic to a line

with the direction t⃗ = (0, 1, 1), and it has a vertical tangent when s
approaches to s3 from the right.

5. For K0 > 0,

y(s) =

∫ s

0

√
K0 sinh

2(
√
Cτ +B)− 1dτ, z(s) =

√
K0

C
cosh(

√
Cs+B),

for s4 ≤ s < ∞, where C = K0 + cosh2 θ0, s4 = 1√
C
arcsinh 1√

K0
−

arccosh
√

C
K0

)
≤ 0 and B = arccosh

√
C
K0

. The graph of α is asymptotic

to a line with the direction t⃗ = (0, 1, 1), and has a vertical tangent when
s approaches to s4 from the right.

Let ε = −1, and consider the initial value condition (4). For s = 0, we have
C = sinh2 θ0 −K0 from (8). Thus, we have the following cases:

Case 2.1. C = sinh2 θ0 −K0 > 0 and K0 < 0. Then, the solution of (9) by
using (4) yields

z(s) =

√
−K0

C
cosh(

√
Cs+B),

where B = arccosh
√

C
−K0

, and hence y(s) =
∫ s

0

√
1−K0 sinh

2(
√
Cτ +B)dτ

for s ∈ R. It follows that the curve α has the horizontal tangent α′ = (0, 1, 0)

at ŝ = −B/
√
C, and at that point, z(ŝ) =

√
−K0

C and z(s) ≥ z(ŝ) for all s, that

is, α has a minimum at the point ŝ. Also, it can be shown that the graph of α is
symmetric across the line y = y(ŝ) in the yz-plane, and that lims→∓∞

dz
dy = ∓1

which implies that the graph of α is asymptotic to lines with the directions
t⃗1 = (0,−1, 1) and t⃗2 = (0, 1, 1).

Case 2.2. C = sinh2 θ0 > 0 and K0 = 0. Without loss of generality we assume
that θ0 > 0. Then, by using (4), the solution of (8) yields z(s) = e(sinh θ0)s,



Surfaces with constant Gaussian and mean curvatures 259

and hence

y(s) =

∫ s

0

√
1 + (sinh2 θ0)e2(sinh θ0)τdτ

=
1

sinh θ0

(√
1 + (sinh2 θ0)e2(sinh θ0)s − arccoth

√
1 + (cosh2 θ0)e2(cosh θ0)s

)
− 1

sinh θ0
(cosh θ0 − arccoth(cosh θ0))

for −∞ < s < ∞. It is easily seen that lims→∞
dz
dy = 1 and lims→−∞

dz
dy = 0

which imply that the graph of α is asymptotic to a line with the direction
t⃗ = (0, 1, 1) and to the y-axis, respectively. Also it is increasing on R.
Case 2.3. C = sinh2 θ0 −K0 > 0 and 0 < K0 < sinh2 θ0. Then, by using (4),
the solution of (9) yields

z(s) =

√
K0

C
sinh(

√
Cs+B),

where B = arcsinh
√

C
K0

, and hence y(s) =
∫ s

0

√
1 +K0 cosh

2(
√
Cτ +B)dτ for

s > − B√
C

as z > 0. It can be seen that lims→∞
dz
dy = 1 which implies that the

graph of α is asymptotic to a line with the direction t⃗ = (0, 1, 1).

Case-2.4. C = sinh2 θ0 −K0 < 0, that is, K0 > sinh2 θ0. Then, by using (4),
the solution of (9) yields

z(s) =

√
K0

−C
cos(

√
−Cs−B),

where B = arccos
√

−C
K0

, and hence y(s) =
∫ s

0

√
1 +K0 sin

2(
√
−Cτ −B)dτ for

−π+2B
2
√
−C

< s < π+2B
2
√
−C

as z > 0. It follows from dz
dy that the graph of α has an

absolute maximum at s = B√
−C

in the interval.

Case 2.5. C=0, that is, K0 = sinh2 θ0. Then, the solution of (8) by using (4)
gives z(s) = (sinh θ0)s + 1 and hence y(s) = (cosh θ0)s. The time-like surface
M1 with the generating curve α(s) = (0, (cosh θ0)s, (sinh θ0)s+ 1) is umbilical
that was studied in Section 2.2. For θ = 0, that is, K0 = 0, M1 is a horosphere.

Therefore we have

Theorem 2.5. LetM1 be a time-like surface invariant by a group of trans-
lation isometries in H3

1 defined by (1) with the generating curve α. Then, M1

has constant Gaussian curvature K0 if and only if α is given by one of the
followings:

1. For K0 < 0,

y(s) =

∫ s

0

√
1−K0 sinh

2(
√
Cτ +B)dτ, z(s) =

√
−K0

C
cosh(

√
Cs+B)
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for s ∈ R, where C = sinh2 θ0 −K0 > 0 and B = arccosh
√

C
−K0

. The

graph of α has an absolute minimum at s = −B/
√
C, and it has oblique

asymptotes with the directions t⃗1 = (0,−1, 1) and t⃗2 = (0, 1, 1).
2. For K0 = 0,

y(s) =
1

sinh θ0

(√
1 + (sinh2 θ0)e2(sinh θ0)s − arccoth

√
1 + (cosh2 θ0)e2(cosh θ0)s

)
− 1

sinh θ0
(cosh θ0 − arccoth(cosh θ0)),

z(s) = e(sinh θ0)s

for −∞ < s <∞. The graph of α is increasing and asymptotic to a line
with the direction t⃗ = (0, 1, 1) and to the y-axis.

3. For 0 < K0 < sinh2 θ0,

y(s) =

∫ s

0

√
1 +K0 cosh

2(
√
Cτ +B)dτ, z(s) =

√
K0

C
sinh(

√
Cs+B)

for − B√
C

< s < ∞ as z > 0, where C = sinh2 θ0 − K0 and B =

arcsinh
√

C
K0

. The graph of α is increasing and asymptotic to a line

with the direction t⃗ = (0, 1, 1).
4. For K0 > sinh2 θ0,

y(s) =

∫ s

0

√
1 +K0 sin

2(
√
−Cτ −B)dτ, z(s) =

√
K0

−C
cos(

√
−Cs−B)

for −π+2B
2
√
−C

< s < π+2B
2
√
−C

as z > 0, where C = sinh2 θ0 − K0 < 0 and

B = arccos
√

−C
K0

. The graph of α has an absolute maximum at s = B√
−C

in the interval.
5. For K0 = sinh2 θ0,

y(s) = (cosh θ0)s, z(s) = (sinh θ0)s+ 1.

The time-like surface M1 with this generating curve is umbilical, and for
θ = 0, i.e. K0 = 0, M1 is a horosphere.

3. Translation in a time-like direction in H3
1

Now, we study time-like surfaces invariant by a group of translation isome-
tries in a time-like direction in H3

1 defined by (2) with the generating curve
γ(s) = (x(s), 0, z(s)). By similar calculations given in Section 2.4, we obtain

the shape operator Añ for the time-like surface M̃1 as

Añ(ẽ1) = [x′ + εz(x′z′′ − z′x′′)]ẽ1 and Añ(ẽ2) = x′ẽ2,
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where the vectors ẽ1 = z ∂
∂s = x′(s)E1+z

′(s)E3 and ẽ2 = E2 with the signatures
ε̃1 = 1 and ε̃2 = −1 are orthonormal tangent vectors, and ñ is the unit normal
vector of the immersion (2).

The Gaussian curvature K and mean curvature H of M̃1 are obtained,
respectively, as follows:

(10) K = zz′′ − z′
2

and

(11) H =
1

2
[z(x′z′′ − z′x′′) + 2x′].

If the Gaussian curvature K = K0 is constant, then the first integral of (10) is
obtained as

(12) z′
2
= Cz2 −K0

from which we have

(13) z′′ = Cz,

where C is a constant.
We introduce the function θ̃(s) which is the angle between the vector γ′(s)

and ∂z such that

x′(s) = sin θ̃(s), z′(s) = cos θ̃(s),

and without loss of generality we may assume that

(14) x(0) = 0, z(0) = 1, θ̃(0) = θ̃0, 0 ≤ θ̃ < π.

Hence, z′(0) = cos θ̃0.

3.1. Umbilical Surfaces M̃1 in H3
1

We study umbilical time-like surfaces M̃1 invariant by a group of translation
isometries in H3

1 defined by (2) with the generating curve γ(s).

A surface M̃1 in H3
1 is umbilical if

x′z′′ − z′x′′ = 0,

which yields θ̃′(s) = 0, i.e. θ̃ = θ̃0 is a constant. Therefore, using the initial

condition (14), we have x(s) = (sin(θ̃0))s, z(s) = (cos(θ̃0))s + 1 with s >

−1/ cos(θ̃0) and cos(θ̃0) ̸= 0. These are the parametric equations of the time-

like straight line γ(s) = ((sin(θ̃0))s, 0, (cos(θ̃0))s+1). For this generating curve

the Gaussian curvature of the time-like umbilical surface M̃1 is K = − cos2(θ̃0)
which is a nonpositive constant. Considering the initial condition (14), the
time-like umbilical surfaces are the vertical totally geodesic time-like plane
x = 0 with K = −1 if θ0 = 0, or the horosphere z = 1 with K = 0 if θ̃0 = π/2,

or a time-like surface with K = − cos2(θ̃0) if θ̃0 ∈ (0, π/2) ∪ (π/2, π).
So, we state
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Theorem 3.1. A surface M̃1 invariant by a group of translation isometries
in H3

1 defined by (2) with a generating curve γ(s) = (x(s), 0, z(s)) is umbilical

if and only if γ(s) = ((sin(θ̃0))s, 0, 1 + (cos(θ̃0))s). Moreover,

1. M̃1 is the vertical totally geodesic time-like plane x = 0 with K = −1 if
θ̃0 = 0, or

2. M̃1 is a time-like surface with K = − cos2(θ̃0) for θ̃0 ∈ (0, π/2)∪(π/2, π),
or

3. M̃1 is the horosphere z = 1 with K = 0 if θ0 = π/2.

3.2. Surfaces M̃1 in H3
1 with constant mean curvature

Here, we determine time-like surfaces M̃1 in H3
1 with constant mean curva-

ture H0. When we solve the differential equation (11) by using x′
2
+ z′

2
= 1

similar to the solution of (5) we obtain that

z′
2
= 1− (cz2 − εH0)

2,

where c is a constant. If c = 0, then, by an appropriate isometry of H3
1 we

write γ(s) = (0, sH0, 1 + s
√
1−H2

0 ), where |H0| ≤ 1. Therefore, the surface

M̃1 defined by this generating curve γ has constant mean curvature H0, and it
is umbilical.

For c ̸= 0, by an appropriate isometry of H3
1, we can only consider

z′(s) =
√
1− (cz2 − εH0)2 and x′(s) = cz2 −H0

from which we can have

x(z) =

∫ z

1

ct2 −H0√
1− (ct2 −H0)2

dt

that holds the initial condition (14). Thus, we can parameterize the generating
curve γ as

γ(z) =
(∫ z

1

ct2 −H0√
1− (ct2 − εH0)2

dt, 0, z
)

for z > 0 with the initial condition γ(1) = (0, 0, 1). By finding the domain of γ
depending on H0 and c, we have

Theorem 3.2. Let M̃1 be a time-like surface invariant by a group of trans-

lation isometries in H3
1 defined by (2) with the generating curve γ. Then, M̃1

has constant mean curvature H0 if and only if γ is given by

γ(z) =
(∫ z

1

ct2 −H0√
1− (ct2 −H0)2

dt, 0, z
)
,

where c is a constant, and the domain of γ is given by

1. for H0 < 0,

(a) 0 < z <
√

1+H0

c when 0 < c < 1 +H0 and −1 < H0 < 0, or
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(b) 0 < z <
√

H0−1
c when H0 − 1 < c < 0 and −1 ≤ H0 < 0, or

(c)
√

1+H0

c < z <
√

H0−1
c when H0 − 1 < c < H0 + 1 and H0 < −1;

2. for H0 = 0, 0 < z < 1√
|c|

when |c| < 1;

3. for H0 > 0,

(a) 0 < z <
√

1+H0

c when 0 < c < H0 + 1 and 0 < H0 ≤ 1, or

(b)
√

H0−1
c < z <

√
H0+1

c when H0 − 1 < c < H0 + 1 and H0 > 1, or

(c) 0 < z <
√

H0−1
c when H0 − 1 < c < 0 and 0 < H0 < 1.

All the intervals contain z = 1.

3.3. Surfaces M̃1 in H3
1 with constant Gaussian curvature

Here we determine time-like surfaces M̃1 invariant by a group of translation
isometries in H3

1 with constant Gaussian curvature K0. When we solve the

differential equation (10) by using x′
2
+ z′

2
= 1 similar to the solution of (7)

we have the followings.

For s = 0 we have C = cos2 θ0 +K0 from (12) and (14).

Case 1.1. C = K0 + cos2 θ0 < 0 with K0 ≤ −1, (θ0 ∈ (0, π)). Then, by using
(14), the solution of (13) yields

z(s) =

√
K0

C
cos(

√
−Cs−B),

where B = arccos
√

C
K0

, and hence x(s) =
∫ s

0

√
1− (−K0) sin

2(
√
−Cτ −B)dτ,

for 1√
−C

(
− arcsin 1√

−K0
+B

)
< s < 1√

−C

(
arcsin 1√

−K0
+B

)
. It follows from

dz
dx that γ has an absolute maximum at s = B√

C
. For K0 = −1 and θ0 ̸= 0, γ is

an open part of the upper semicircle in the xz-plane centered at (− cos θ0
| sin θ0| , 0)

with radius 1
| sin θ0| .

Case 1.2. C=0, that is, K0 = − cos2 θ0. Then, the solution of (12) with (14)

gives z(s) = (cos θ0)s+1 and hence x(s) = (sin θ0)s. The time-like surface M̃1

with the generating curve γ(s) = ((sin θ0)s, 0, (cos θ0)s + 1) with s > − sec θ0
is umbilical that was studied in Section 3.1.

Case 1.3. C = K0 + cos2 θ0 > 0 with − cos2 θ0 < K0 < 0. Then, by using
(14), the solution of (13) yields

z(s) =

√
−K0

C
sinh(

√
Cs+B),
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whereB = arcsinh
√

C
−K0

, and hence x(s) =
∫ s

0

√
1− (−K0) cosh

2(
√
Cτ +B)dτ

for − B√
C
< s < 1√

C

(
arccosh 1√

−K0
−B

)
= s1. It can be seen that γ is increas-

ing on the interval, and it has a vertical tangent when s approaches to s1 from
the left.
Case 1.4. C = cos2 θ0 > 0 and K0 = 0. Then, by using (14), the solution of
(12) yields

z(s) = e(cos θ0)s,

and hence

x(s) =

∫ s

0

√
1− (cos2 θ0)e2(cos θ0)τdτ

=
1

cos θ0

(√
1− (cos2 θ0)e2(cos θ0)s − arctanh

√
1− (cos2 θ0)e2(cos θ0)s

)
− 1

cos θ0
(sin θ0 − arctanh(sin θ0))

for −∞ < s < − ln(cos θ0)
cos θ0

= s2. From which it can be seen that γ is increasing

and lims→−∞
dz
dx = 0 which implies that the graph of α is asymptotic to the

x-axis, and also it has a vertical tangent when s approaches to s2 from the left.
Case 1.5. C = K0 + cos2 θ0 > 0 with K0 > 0. Then, by using (14), the
solution of (13) yields

z(s) =

√
K0

C
cosh(

√
Cs+B),

where B = arccosh
√

C
K0

, and hence x(s) =
∫ s

0

√
1−K0 sinh

2(
√
Cτ +B)dτ for

− 1√
C

(
arcsinh 1√

K0
+ B

)
≤ s ≤ 1√

C

(
arcsinh 1√

K0
− B

)
. The curve γ is has a

horizontal tangent at s = −B√
C
, and it has vertical tangents at the end points.

From dz
dx , it seen that γ has an absolute minimum at s = −B√

C
.

As a summary we state

Theorem 3.3. Let M̃1 be a time-like surface invariant by a group of trans-

lation isometries in H3
1 defined by (2) with the generating curve γ. Then, M̃1

has constant Gaussian curvature K0 if and only if the x and z components ofγ
are given by one of the following:

1. For K0 ≤ −1,

x(s) =

∫ s

0

√
1− (−K0) sin

2(
√
−Cτ −B)dτ, z(s) =

√
K0

C
cos(

√
−Cs−B),

for 1√
−C

(
− arcsin 1√

−K0
+ B

)
< s < 1√

−C

(
arcsin 1√

−K0
+ B

)
, where

C = K0+cos2 θ0 < 0 and B = arccos
√

C
K0

. The curve γ has an absolute

maximum at s = B√
C
. For K0 = −1 with θ0 ̸= 0, γ is an open part of
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the upper semicircle in the xz-plane centered at (− cos θ0
| sin θ0| , 0) with radius

1
| sin θ0| .

2. For K0 = − cos2 θ0, γ(s) = ((sin θ0)s, 0, (cos θ0)s + 1) with s > − sec θ0.

For this generating curve M̃1 is umbilical.
3. For − cos2 θ0 < K0 < 0,

x(s) =

∫ s

0

√
1− (−K0) cosh

2(
√
Cτ +B)dτ, z(s) =

√
−K0

C
sinh(

√
Cs+B),

for − B√
C
< s < 1√

C

(
arccosh 1√

−K0
− B

)
= s1, where C = K0 + cos2 θ0

and B = arcsinh
√

C
−K0

. The curve γ is increasing, and it has a vertical

tangent when s approaches to s1 from the left.
4. For K0 = 0,

x(s) =
1

cos θ0

(√
1− (cos2 θ0)e2(cos θ0)s − arctanh

√
1− (cos2 θ0)e2(cos θ0)s

)
− 1

cos θ0
(sin θ0 − arctanh(sin θ0)),

z(s) = e(cos θ0)s

for −∞ < s < − ln(cos θ0)
cos θ0

= s2. It can be seen that γ is asymptotic to
the x-axis, increasing and has a vertical tangent when s approaches to
s2 from the left.

5. For K0 > 0,

x(s) =

∫ s

0

√
1−K0 sinh

2(
√
Cτ +B)dτ, z(s) =

√
K0

C
cosh(

√
Cs+B)

for − 1√
C

(
arcsinh 1√

K0
+ B

)
≤ s ≤ 1√

C

(
arcsinh 1√

K0
− B

)
, where C =

K0 + cos2 θ0 and B = arccosh
√

C
K0

. The curve γ has an absolute mini-

mum at s = −B√
C
, and it has vertical tangents at the end points.
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[10] R. López, Minimal translation surfaces in hyperbolic space, Beitr. Algebra Geom. 52
(2011), 105–112.
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