• Title/Summary/Keyword: anti-diabetic effects

Search Result 382, Processing Time 0.029 seconds

Sinensetin Inhibits Interleukin-6 in Human Mast Cell - 1 Via Signal Transducers and Activators of the Transcription 3 (STAT3) and Nuclear Factor Kappa B (NF-κB) Pathways

  • Chae, Hee-Sung;Kim, Young-Mi;Chin, Young-Won
    • Natural Product Sciences
    • /
    • v.23 no.1
    • /
    • pp.1-4
    • /
    • 2017
  • Sinensetin, a pentamethoxyflavone, is known to exert various pharmacological activities including anti-angiogenesis, anti-diabetic and anti-inflammatory activities. However, its effects on the human mast cell - 1 (HMC-1) mediated inflammatory mechanism remain unknown. To explore the mediator and cellular inflammatory response of sinensetin, we examined its influence on phorbol 12-myristate 13-acetate (PMA) plus A23187 induced inflammatory mediator production in a human mast cell line. In this study, interleukin (IL)-6 production was measured using the enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction. Sinensetin inhibited PMA plus A23187 induced IL-6 production in a dose-dependent manner as well as IL-4, IL-5 and IL-8 mRNA expression. Furthermore, sinensetin inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, suggesting that sinensetin inhibits the production of inflammatory mediators by blocking STAT3 phosphorylation. Moreover, sinensetin was found to inhibit nuclear factor kappa B activation. These findings suggest that sinensetin may be involved in the regulation of mast cell-mediated inflammatory responses.

Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

  • Sung, Nak Yoon;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$ in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-${\kappa}B$-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-${\kappa}B$ nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-${\kappa}B$ activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-${\kappa}B$ activation.

Effects of ${\beta}-glucan$ from Lentinus edodes and Hordeum vulgare on Blood Glucose and Lipid Composition in Alloxan-induced Diabetic Mice (표고버섯과 보리에서 추출한 ${\beta}-glucan$이 Alloxan 유발 당뇨 마우스의 혈당 및 지질 성분에 미치는 영향)

  • Song, Ji-Young;Yoon, Ki-Ju;Yoon, Hae-Kyung;Koo, Sung-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.802-807
    • /
    • 2001
  • Effects of ${\beta}-glucan$ from Lentinus edodes and hordeum vulgare on blood glucose and lipid composition were investigated. Diabetes mellitus was induced in male ICR mice by the injection of alloxan into the tail vein at a dose of 75 mg/kg. The ${\beta}-glucan$ were administered orally for 10 days and the normal and alloxan-control group were orally administered with saline. The body weight gain and food intake were monitored every day and plasma levels of glucose, triglyceride, total cholesterol, LDL-cholesterol were determined at last day. Also the weight of liver, heart, spleen and kidney were determined. The ${\beta}-glucan$ from Lentinus edodes and hordeum vulgure lowered significantly body weight gain in alloxan-induced diatetic mice (p<0.05) and plasma glucose levels compared to that of alloxan-control group. Plasma triglyceride level in B500 was lowered in alloxan-induced diabetic mice. The ${\beta}-glucan$ of hordeum vulgare lowered weight of liver significantly (p<0.05). In conclusion, it was assumed that ${\beta}-glucan$ from hordeum vulgare have anti-hyperglycemic and anti-obese effects by reducing body weight gain and decreasing serum glucose and triglyceride level.

  • PDF

Inhibitory Effects of Punica granatum L. Extracts on Degranulation in Human Basophilic KU812F Cells (석류 추출물에 의한 인간호염구(KU812F 세포)의 탈과립 억제효과)

  • Park, Kyong-Tae;Shim, Sun-Yup;Chun, Soon-Sil
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.702-706
    • /
    • 2008
  • Punica granatum (PG) evidences a variety of physiological properties, including anti-diabetic, anti-cancer, antiinflammatory, anti-microbial, and anti-oxidative activities. Using the human basophilic KU812F cells, the inhibitory effects of the methanolic extract of PG seed, shell, and juice on calcium ionophore, A23187-induced degranulation were assessed. All of the PG extracts inhibited A23187-induced intracellular $Ca^{2+}$ levels, ${\beta}$-hexosaminidase, and histamine release in a dose-dependent manner. These results showed that all of the PG extracts are potent inhibitors of degranulation in allergic reactions, via the suppression of $Ca^{2+}$ influx.

The Efficacy of Lowering Blood Glucose Levels Using the Extracts of Fermented Bitter Melon in the Diabetic Mice (당뇨 마우스에서 여주발효추출물의 혈당 강하 효능)

  • Park, Hye Seon;Kim, Woo Kyeong;Kim, Hyun Pyo;Yoon, Young Geol
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.259-265
    • /
    • 2015
  • Momordica charantia, commonly known as bitter melon, has interesting pharmacological activities such as anticancer, antiviral, antibacterial, anti-inflammatory, analgesic, and antioxidant. As supported by recent scientific reports on the beneficial effects of M. charantia, it is one of the most promising functional plants for diabetes today. In this study, we fermented the bitter melon with lactic acid bacteria and investigated the capability of controlling diabetic conditions by decreasing the blood glucose levels. After extracting the fermented bitter melon with hot water or ethanol, we tested several biological activities using mouse models. When we tested the efficacy of the glycemic control, the extracts of fermented bitter melon significantly lowered the blood glucose levels of the alloxan-induced diabetic mice. We also found that the lactic acid bacteria-fermented bitter melon protected liver damages from the treatment of alloxan monohydrates and maintained low levels of triglycerides and high levels of HDL cholesterol in these mouse models. These results suggest that our approach on fermenting bitter melon and the extracts of fermented bitter melon could lead to the possibility of the development of functional foods that contain the effectiveness of controlling blood glucose and lipid levels as well as preventing liver damages.

Anti-diabetic Effects of Fermented Green Tea in KK-Ay Diabetic Mice (제2형 당뇨 모델 KK-Ay 마우스에 대한 발효 녹차의 항당뇨 효과)

  • Lee, So-Young;Park, So-Lim;Nam, Young-Do;Yi, Sung-Hun;Lim, Seong-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.488-494
    • /
    • 2013
  • The anti-diabetic effect of green tea fermented by cheonggukjang was evaluated using KK-$A^y$ mice, an animal model of type 2 diabetes mellitus. Over a 90 day testing period, food and water intake decreased significantly in the group fed fermented green tea (FGT) and a group fed commercially available health functional food (PC), when compared with a diabetic control group (DC). The blood glucose levels of FGT mice were lower than in DC mice throughout the test period and were similar to the levels in PC after 60 days. Levels of Hemoglobin A1c (HbA1c) levels and insulin resistance were lower in mice of the FGT group than in mice of the DC group. DNA microarray analysis showed that administration of FGT increased the abundance of 12 mRNA transcripts related to diabetes. Whereas FGT increased hexokinase transcripts related to glycolysis more than 37 fold, levels of Pdx1 (pancreatic and duodenal homeobox1) and Cacna1e (calcium channel) transcripts increased more than 1.8 fold.

Dietary nobiletin suppresses TGF-β1- Src-caveolin-1 dependent signaling involved with high glucose-induced renal mesangial matrix accumulation (고혈당으로 유도된 신장 mesangial cell 에서 nobiletin의 matrix accumulation 과 TGF-β1-Src-caveolin-1 signaling에 의한 사구체 경화증 억제효과)

  • Kim, Dong Yeon;Kang, Young-Hee;Kang, Min-Kyung
    • Journal of Nutrition and Health
    • /
    • v.53 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Purpose: Diabetic nephropathy is one of the most important diabetic complications prompted by chronic hyperglycemia, characterized by glomerulosclerosis, tubular fibrosis, and it eventually causes kidney failure. Nobiletin is a polymethoxyflavone present in tangerine and other citrus peels, and has anti-cancer and anti-inflammatory effects. This study investigated the effects of nobiletin on glomerular fibrosis through inhibition of the transforming growth factor (TGF)-β1-Src-caveolin-1 pathway. Methods: Human renal mesangial cells (HRMC) were incubated in media containing 33 mM glucose with or without 1-20 uM nobiletin for 3 day. The cellular expression levels of fibrogenic collagen IV, fibronectin, connective tissue growth factor (CTGF), TGF-β1, Src and caveolin-1 were all examined. In addition, TGF-β1, Src and caveolin-1 proteins were screened to reveal the relationship among TGF-β1-Src-caveolin-1 signaling in glomerular fibrosis. Results: High glucose promoted the production of collagen IV, fibronectin and CTGF in HRMC, which was inhibited in a dose dependent manner by 1-20 uM nobiletin. The Western blot data showed that high glucose elevated the expression of TGF-β1, Src, caveolin-1 and Rho GTPase. When nobiletin was treated to the HRMC exposed to high glucose, the expression of TGF-β1-Src-caveolin-1 was dampened. Finally, TGF-β1-Src-caveolin-1 signaling pathway was activated in high glucose-exposed HRMC, and such activation was encumbered by nobiletin. Conclusion: These result demonstrated that nobiletin blunted high glucose-induced extracellular matrix accumulation via inhibition of the TGF-β1-Src-caveolin-1 related intracellular signaling pathway. Nobiletin may be a potent renoprotective agent to counteract diabetes-associated glomerular fibrosis that leads to kidney failure.

Characteristics and in vitro Anti-diabetic Properties of the Korean Rice Wine, Makgeolli Fermented with Laminaria japonica

  • Choi, Jae-Suk;Seo, Hyo Ju;Lee, Yu-Ri;Kwon, Su-Jung;Moon, Sun Hwa;Park, Sun-Mee;Sohn, Jae Hak
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.2
    • /
    • pp.98-107
    • /
    • 2014
  • New in vitro anti-diabetes makgeolli was produced from rice by adding various quantities of Laminaria japonica, and the fermentation characteristics of the L. japonica makgeolli during the fermentation process were investigated. The contents of alcohol and reducing sugar, and viable count of yeast, of L. japonica makgeolli were not significantly changed when the proportion of L. japonica was increased. The total acid content decreased with an increase in L. japonica concentration; the pH and total bacterial cell count increased in proportion with the increase in L. japonica concentration. The L. japonica makgeolli contents of free sugars, such as fructose, glucose, and sucrose, and of organic acids, such as acetic acid, citric acid, succinic acid, and lactic acid, were altered during fermentation and showed various patterns. The effects of the quantity of L. japonica added on the acceptability and anti-diabetes activities of L. japonica makgeolli were also investigated. In a sensory evaluation, L. japonica makgeolli brewed by adding 2.5 or 5% L. japonica to the mash showed the best overall acceptability; the 12.5% L. japonica sample was least favored due to its seaweed flavor. L. japonica addition did not increase the peroxynitrite-scavenging activity of makgeolli. L. japonica makgeolli showed potent anti-diabetes activity, particularly that containing >7.5% L. japonica. Therefore, L. japonica makgeolli may represent a new functional makgeolli with anti-diabetes properties.

Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity

  • Song, Bong-Kyu;Kim, Kyeng Min;Choi, Kang-Duk;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1233-1241
    • /
    • 2017
  • The ginsenoside Rh2 has strong anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the application of ginsenoside Rh2 is restricted because of the small amounts found in Korean white and red ginsengs. To enhance the production of ginsenoside Rh2-MIX (comprising 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3 as a 10-g unit) with high specificity, yield, and purity, a new combination of enzymatic conversion using the commercial enzyme Viscozyme L followed by acid treatment was developed. Viscozyme L treatment at pH 5.0 and $50^{\circ}C$ was used initially to transform the major ginsenosides Rb1, Rb2, Rc, and Rd into ginsenoside F2, followed by acid-heat treatment using citric acid 2% (w/v) at pH 2.0 and $121^{\circ}C$ for 15 min. Scale-up production in a 10-L jar fermenter, using 60 g of the protopanaxadiol-type ginsenoside mixture from ginseng roots, produced 24 g of ginsenoside Rh2-MIX. Using 2 g of Rh2-MIX, 131 mg of 20(S)-Rh2, 58 mg of 20(R)-Rh2, 47 mg of Rk2, and 26 mg of Rh3 were obtained at over 98% chromatographic purity. Then, the anti-cancer effect of the four purified ginsenosides was investigated on B16F10, MDA-MB-231, and HuH-7 cell lines. As a result, these four rare ginsenosides markedly inhibited the growth of the cancer cell lines. These results suggested that rare ginsenoside Rh2-MIX could be exploited to prepare an anti-cancer supplement in the functional food and pharmaceutical industries.

Anti-diabetic effects of aqueous and ethanol extract of Dendropanax morbifera Leveille in streptozotocin-induced diabetes model (Streptozotocin에 의해 유도된 당뇨모델동물에서 황칠나무 (Dendropanax morbifera Leveille)의 열수추출물과 에탄올추출물의 당뇨 질환 개선 효능)

  • An, Na Young;Kim, Ji-Eun;Hwang, DaeYoun;Ryu, Ho Kyung
    • Journal of Nutrition and Health
    • /
    • v.47 no.6
    • /
    • pp.394-402
    • /
    • 2014
  • Purpose: Dendropanax morifera Leveille (DML) exhibits diverse biological and pharmacological activities, including anti-oxidative effect, anti-cancer activity, hepatoprotection, immunological stimulation, and bone regeneration. As part of the identification for novel functions of DML, we investigated the therapeutic effects of DML on diabetes induced by streptozotocine (STZ) treatment. Methods: First, the four extracts including the water extract of leaf (DLW), the ethanol extract of leaf (DLE), the water extract of stem (DSW), and the ethanol extract of stem (DSE) were collected from the leaf and stem of DML using a hot water and ethanol solvent. Alterations in body weight, glucose concentration, insulin level, and pancreatic islet structure were investigated in diabetic mice after treatment with extracts of DML for 2 weeks. Results: Among four extracts, the highest level of total polyphenols and total flavonoids was detected in DLW, while the lowest level of these was measured in DSE. The radical scavenging activity was also higher in DLW than in the other three extracts at the concentration of $25-100{\mu}g/mL$, although this activity was maintained at a constant level in all groups at the concentration of $500{\mu}g/mL$. Based on the results of anti-oxidant activity, DLW and DLE were selected for examination of anti-diabetic effects in a diabetes model. Body weight was gradually decreased in all STZ treated groups compared with the No treated group. However, four STZ/DML treated groups maintained a high level of body weight during 7-14 days, while the STZ/vehicle treated group showed a gradual decrease of body weight during the same period. Also, a significant decrease or increase in the concentration of glucose and insulin in the blood of the diabetes model was detected in a subset of groups, although the highest increase was detected in the STZ/DLE-200 treated group. In addition, the histological structure of pancreatic islet was significantly recovered after treatment with DLW and DLE. Conclusion: These results suggest that DLW and DLE may contribute to attenuation of clinical symptoms of diabetes as well as prevent the destruction of pancreatic ${\beta}$-cells in STZ-induced diabetes mice.