• Title/Summary/Keyword: anti-diabetes effect

Search Result 335, Processing Time 0.036 seconds

Effects of Chamaeneron angustifolia Extract on Lipid Metabolism and Differentiation of 3T3-L1 Preadipocyte (Chamaeneron angustifolia 추출물이 3T3-L1 Preadipocyte의 지방대사 및 분화에 미치는 영향)

  • Seul Bi Lee;Moon-Yeol Choi;Mi Hyung Kim;So-Young Kim;Mi Ryeo Kim
    • The Korea Journal of Herbology
    • /
    • v.39 no.4
    • /
    • pp.29-35
    • /
    • 2024
  • Objectives : Obesity is an imbalance between energy intake and consumption due to overeating and lack of exercise, and if it persists, it increases non-infectious diseases such as high blood pressure, diabetes, and hyperlipidemia. In this study, we tried to investigate the possibility of using Chamaeneron angustifolia (CA) as a material for anti-obesity by confirming the effect of inhibiting lipid differentiation. Methods : We measured the effects of CA extract on oil-red-o staining, cell cytotoxicity evaluation activity using 3T3-L1 cells. Additionally, we assessed fat decomposition and metabolism-related protein expression through Western blot analysis. Results : In this study, the anti-obesity effects of CA extract were experimentally assessed. Results showed significant inhibition of adipocyte differentiation and accumulation at concentrations of 0.05, 0.1, and 0.2 mg/ml of oil-red-o staining, with reductions of 80% or more. CA notably increased the phosphorylation of AMPK protein expression compared to the control group across all concentrations. Additionally, phosphorylation of ACC significantly increased at a concentration of 0.2 mg/ml compared to the control. PPAR-γ, which regulates adipogenesis, exhibited a significant decrease compared to the control, while protein expression of CPT-1, involved in fatty acid oxidation, showed a concentration-dependent increase across all groups. Therefore, CA extract demonstrates potential as a functional material for anti-obesity by increasing the expression of proteins related to fat decomposition and synthesis while decreasing others. Conclusions : These results suggest that CA may also be useful as an anti-obesity functional substance.

Effects of Mori Fructus Extract on Hyperglycemia, Hyperlipidemia, Polyol Pathway, AGE and RAGE in ob/ob Mice (상침자(桑椹子)추출물이 ob/ob mouse의 혈당, 혈청 지질, Polyol Pathway, AGE 및 RAGE에 미치는 영향)

  • Lee, Min-Dong;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.351-359
    • /
    • 2009
  • Etiological studies of diabetes and its complications showed that oxidative stress might play a major role, Therefore, many efforts have been tried to regulate free oxygen radicals for treating diabetes and its complications. Mori Fructus extract has been known to be effective for the antidiabetic, antihyperlipidemic and antiobesitic prescription, and composed of four crude herbs, The aim of this study was to investigate the effect of Mori Fructus extract in male ob/ob mouse with severe obesity, hyperinsulinemia, hyperglycemia, hyperlipidemia. Mice were grouped and treated for 5 weeks as follows. Both the lean (C57BL/6J black mice) and diabetic (ob/ob mice) control groups received standard chow. The experimental groups were fed with a diet of chow supplemented with 7.5, 15 and 30 mg Mori Fructus extract per 1 kg of body weight for 14 days. The effects of Mori Fructus extract on the ob/ob mice were observed by measuring the serum levels of glucose, insulin, lipid components, and the kidney levels of reactive oxygen species (ROS), MDA+HAE, GSH and also the enzyme activities involved in polyol pathway. Western blotting was performed using anti-AGE, anti-RAGE respectively. Mori Fructus extract lowered the levels of serum glucose and insulin in a dose dependent manner. Total cholesterol, triglyceride and free fatty acid levels were decreased, while the HDL-cholesterol level was increased, in Mori Fructus extract treated groups. Renal aldose reductase and sorbitol dehydrogenase activities were increased in the ob/ob mice, whereas those were inhibited in the Mori Fructus extract-administered groups. Mori Fructus extract inhibited the generation of ROS in the kidney. MDA+HAE level was increased and the GSH level was decreased in the ob/ob mice, whereas those were improved in the Mori Fructus extract-administered groups. Mori Fructus extract inhibited the expression of AGE, RAGE in the ob/ob mice. The results suggested that Mori Fructus exerted the antidiabetic and antihyperlipidemic activities by regulating the activities of polyol pathway enzymes, scavenging the ROS, decreasing the MDA+HAE level, increasing the GSH level and inhibiting the expression of AGE, RAGE in the ob/ob mice.

Anti-diabetic peptides derived from milk proteins (우유단백질 유래 혈당 조절 기능성 펩타이드)

  • Kim, Seonyoung;Imm, Jee-Young
    • Food Science and Industry
    • /
    • v.51 no.4
    • /
    • pp.302-312
    • /
    • 2018
  • Bioactive peptides generated from milk proteins play an important role in the prevention and alleviation of diabetes. Whey proteins possess direct insulinotropic effect by amino acids (especially branch chain amino acids) produced through its gastrointestinal digestion. Additionally, blood glucose level can be lowered by gut hormone which called incretin [glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)]. However, physiological effects of incretin readily disappeared by dipeptidyl peptidase-4 (DPP-4) causing degradation of GLP-1. Several DPP-4 inhibitors are currently used as therapeutic medicines for the treatment of type II diabetes. More than 60 natural peptide (2-14 amino acids) DPP-4 inhibitors were identified in milk proteins. Peptide DPP-4 inhibitors act as substrate inhibitor and delay breakdown of GLP-1 both in vitro and in vivo. This review summarizes nutritional quality of milk proteins, absorption and mode of action of bioactive peptides, and finally up-to-dated knowledge on DPP-4 inhibitory peptides derived from milk proteins.

Enhancement of Cyclo-His-Pro (CHP) Content from Soybean Fermented with Bacillus amyloliquefaciens CHP-12 and Its Anti-diabetic Effect (Bacillus amyloliquefaciens CHP-12에 의한 대두 발효물의 Cyclo-His-Pro (CHP) 함량 증진 및 항당뇨 효과)

  • Ra, Kyung-Soo;Choi, Jang-Won
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.41-48
    • /
    • 2011
  • To enhance cyclo-His-Pro (CHP) content, soybean hydrolysate was obtained using the strains isolated from Chungkukjang and further purified by various purification steps. First, twenty two strains were screened from Chungkukjang containing high level of CHP. Among them, the strain No. 12, which showed higher productivity of CHP from soybean ferment and have homologous sequence with 16S rDNA of Bacillus amyloliquefaciens, was named B. amyloliquefaciens CHP-12. Through various purification processes, CHP was concentrated from soybean ferment using ultrafiltration, which showed the best efficiency of CHP production, with the yield (71.3%) and CHP content (2.14 mg/g). Moreover, when glucose tolerance test was performed in Type I Sprague-Dawley rat induced by streptozotocin using the soybean ferments [0.5 g soybean ferment/kg body weight (CHP-0.5 group)] and 1.0 g soybean ferment/kg body weight (CHP-1.0 group), there were significant differences in glucose levels between diabetes-control group (265.3 mg/dL) and soybean ferment-treated groups (CHP-0.5 group: 84.3 mg/dL and CHP-1.0 group: 85.3 mg/dL) 120 min after glucose injection (2 g/kg body weight) (p < 0.05). Accordingly, it is suggested that the soybean ferment containing high level of CHP might be a candidate material as an anti-diabetic supplement for manufacturing functional healthy foods.

The Stem Bark of Kalopanax pictus Exhibits Anti-inflammatory Effect through Heme Oxygenase-1 Induction and NF-${\kappa}B$ Suppression

  • Bang, Soo-Young;Park, Ga-Young;Park, Sun-Young;Kim, Ji-Hee;Lee, Yun-Kyoung;Lee, Sang-Joon;Kim, Young-Hee
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.212-218
    • /
    • 2010
  • Backgroud: The stem bark of Kalopanax pictus (KP) has been used in traditional medicine to treat rheumatoidal arthritis, neurotic pain and diabetes mellitus in China and Korea. In this study, the mechanism responsible for anti-inflammatory effects of KP was investigated. Methods: We examined the effects of KP on NO production, nitric oxide synthase (iNOS) and HO-1 expression, NF-${\kappa}B$, Nrf2 and MAPK activation in mouse peritoneal macrophages. Results: The aqueous extract of KP inhibited LPS-induced NO secretion as well as inducible iNOS expression, without affecting cell viability. KP suppressed LPS-induced NF-${\kappa}B$ activation, phosphorylation and degradation of $I{\kappa}B-{\alpha}$, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, KP induced HO-1 expression and Nrf2 nuclear translocation. Conclusion: These results suggest that KP has the inhibitory effects on LPS-induced NO production in macrophages through NF-${\kappa}B$ suppression and HO-1 induction.

Effect of Aloe on Learming and Memory lmpaiments in Dementia Animal Model SAMP8 (치매동물모델 SAMP8에 있어서 기억. 학습장해에 미치는 알로에의 영향 III. SAMP8의 신경전달물질 및 그 대사산물에 미치는 알로에의 투여효과)

  • Choi, Jin-Ho;Kim, Dong-Woo;Kim, Jae-il;Han, Sang-Seop;Shim, Chang-Sub
    • Journal of Life Science
    • /
    • v.6 no.2
    • /
    • pp.142-148
    • /
    • 1996
  • Aloe(Aloe arborescens M$_{ILL}$) has been used as a home medicine for the past several thousand in the world, and has been studied on anti-bacterial and anti-fungal activities, hypotension, atherosclerosis, myocardiac infartion, apoplexy, diabetes as a chronic digenerative disease, tumors, gastrointestinal tract, liver and pancreas' diseases, and genitourinary tract etc. SAMP8 as a learing and memory impairment animal model were fed basic and/or experimental diets with 1.0% freezing dried(FD)-aloe for 8 months. The passive avoidance tests such as acqusition trial and retention test were significantly higher in aloe group than in control group. Grading score of senescence resulted in a marked decreases in aloe group compared with control group. Acetylcholinesterase(AChE) activity was remarkably increased in aloe group compared with control group. Neurotransmitters such as dopamine(DA) and serotonin(5-HT) almost did not change by the feeding of aloe-added diet, but their metabolites such as homovanillic acid(HVA) and 5-hydroxy-indole acetic acid(5-HIAA) in aloe group were significantly increased compared with control group. Therefore, the ratios of HVA/DA and 5-HIAA/5-HT as a ratio of metabolite on neurotransmitter were significantly increased by the feeding of aloe-added diet. These results suggest that aloe vara may be activated acetylcholinesterase, the metabolite of neurotransmitter, and ratios of metabolite on neurotransmitter, resulting ina greater prevention of learning and memory impairments such as Alzheimertype dementia.

  • PDF

Anti-diabetic Mechannism Study of Korean Red Ginseng by Transcriptomics (전사체 프로파일을 이용한 고려 홍삼의 항당뇨 기전 연구)

  • Yuan, Hai-Dan;Shin, En-Jung;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.345-354
    • /
    • 2008
  • This study was designed to investigate the anti-diabetic effect and mechanism of Korean red ginseng extract through transcriptomics in C57BL/KsJ db/db mice. The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. At the end of treatment, we measured blood glucose, insulin, hemoglobin A1c (HbA1c), triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). RGL-treated group lowered the blood glucose and HbA1c levels by 19.6% and 11.4% compared to those in diabetic control group. In addition, plasma adiponectin and leptin levels in RGL-treated groups were increased by 20% and 12%, respectively, compared to those in diabetic control. Morphological analyses of liver, pancreas and epidydimal adipose tissue were done by hematoxylin-eosin staining, and pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. RGL-treated group revealed higher insulin contents and lower glucagon contents compared to diabetic control. To elucidate an action mechanism of Korean red ginseng, DNA microarray analyses were performed in liver and fat tissues, and western blot and RT-PCR were conducted in liver for validation. According to hierarchical clustering and principal component analysis of gene expression Korean red ginseng treated groups were close to metformin treated group. In summary, Korean red ginseng lowered the blood glucose level through protecting destruction of islet cells and shifting glucose metabolism from hepatic glucose production to glucose utilization and improving insulin sensitivity through enhancing plasma adiponectin and leptin levels.

Anti-obesity Effects of Barley Sprout Young Leaf on 3T3-L1 Cells and High-fat Diet-induced Obese Mice (지방분화가 유도된 3T3-L1 세포와 고지방식이로 유도된 마우스에서 보리순 물추출물의 항비만 효과)

  • Kang, Byoung Man;Sim, Mi Ok;Kim, Min Suk;Yoo, Seung Jin;Yeo, Jun Hwan;Jung, Won Seok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.367-374
    • /
    • 2017
  • Background: An imbalance in energy intake and expenditure can cause obesity, which is a major risk factor for chronic diseases such as heart disease, type 2 diabetes, insulin resistance, cancers and hyperlipidemia. Methods and Results: In this study, we evaluated the anti-obesity effects of a water extract from the young leaves of barley sprout (BS) in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice (HF). Lipid accumulation measurement indicates that BS markedly inhibited adipogenesis by reducing lipid droplet production in a dose-dependent manner. Furthermore, the mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor-${\gamma}$ and fatty acid synthetase, CCAAT/enhancer binding protein-${\alpha}$ and fatty acid binding protein 4 in 3T3-L1 cells was significantly inhibited by BS treatment. In an in vivo test, the BS-administered group of HFD-induced mice showed less body weight gain, and lower liver and epididymal white adipose tissue weights. The BS-treated mice showed decreased serum levels of leptin and lipids compared to untreated HFD mice and the levels of adiponectin and the HDL-cholesterol/total cholesterol ratio increased. These results indicate that BS inhibits body fat accumulation by reducing the mRNA expression of lipogenesis transcription factors and increasing serum adipokine concentration in in vitro and in vivo tests. Conclusions: BS reduced high fat diet-induced weight gain and had a positive effect on dyslipidemia.

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.

Morin alleviates fructose-induced metabolic syndrome in rats via ameliorating oxidative stress, inflammatory and fibrotic markers

  • Heeba, Gehan Hussein;Rabie, Esraa Mohamed;Abuzeid, Mekky Mohamed;Bekhit, Amany Abdelrehim;Khalifa, Mohamed Montaser
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.177-187
    • /
    • 2021
  • Metabolic syndrome (MBS) is a widespread disease that has strongly related to unhealthy diet and low physical activity, which initiate more serious conditions such as obesity, cardiovascular diseases and type 2 diabetes mellitus. This study aimed to examine the therapeutic effects of morin, as one of the flavonoids constituents, which widely exists in many herbs and fruits, against some metabolic and hepatic manifestations observed in MBS rats and the feasible related mechanisms. MBS was induced in rats by high fructose diet feeding for 12 weeks. Morin (30 mg/kg) was administered orally to both normal and MBS rats for 4 weeks. Liver tissues were used for determination of liver index, hepatic expression of glucose transporter 2 (GLUT2) as well as both inflammatory and fibrotic markers. The fat/muscle ratio, metabolic parameters, systolic blood pressure, and oxidative stress markers were also determined. Our data confirmed that the administration of morin in fructose diet rats significantly reduced the elevated systolic blood pressure. The altered levels of metabolic parameters such as blood glucose, serum insulin, serum lipid profile, and oxidative stress markers were also reversed approximately to the normal values. In addition, morin treatment decreased liver index, serum liver enzyme activities, and fat/muscle ratio. Furthermore, morin relatively up-regulated GLUT2 expression, however, down-regulated NF-κB, TNF-α, and TGF-β expressions in the hepatic tissues. Here, we revealed that morin has an exquisite effect against metabolic disorders in the experimental model through, at least in part, antioxidant, anti-inflammatory, and anti-fibrotic mechanisms.