• Title/Summary/Keyword: anti-apoptosis

Search Result 1,642, Processing Time 0.022 seconds

Protective Effect of Aqueous Extracts of Styela Clava Tunic Against Apoptosis of HepG2 Cells Induced by Hydrogen Peroxide (미더덕껍질의 유수추출물이 과산화수소에 의해 유발된 HepG2간암세포의 세포사멸에 미치는 보호 효과)

  • Koh, Eun Kyoung;Lee, Young Ju;Kim, Ji Eun;Kwak, Moon Hwa;Go, Jun;Son, Hong Joo;Lee, Hee Seob;Jung, Young Jin;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.595-602
    • /
    • 2014
  • Styela Clava tunic (SCT) has found some applications in many areas of medical treatment including as an anti-inflammatory compound, a wound healing film, in guided bone regeneration, and as a food additive. The protective effect of SCT aqueous extract (AE-SCT) on cell death induced by $H_2O_2$ treatment was investigated by measuring the changes in cell viability in HepG2 cells after AE-SCT treatment. High concentrations of antioxidant compounds including flavonoids (3.3 mg/g) and phenolics (32.3 mg/g) were detected in AE-SCT but no significant cytotoxicity was observed in HepG2 cells treated with AE-SCT. The viability of HepG2 cells was also not changed by treatment with different concentrations of AE-SCT after $H_2O_2$ treatment. However, cell viability was significantly increased in cells treated with three different concentrations of AE-SCT before $H_2O_2$ treatment. The greatest increase in cell viability was observed in the group treated with $50{\mu}g/ml$ AE-SCT, when compared with vehicle-treated group. FACS and DAPI staining analysis indicated that the decrease in number of dead cells was dependent on the concentration of AE-SCT. Alterations in the Bax/Bcl-2 ratio after $H_2O_2$ treatment were significantly restored by treatment with different concentrations of AE-SCT. These results indicate that AE-SCT, which contains high levels of antioxidants, may protect cells against death induced by $H_2O_2$ treatment.

The Comparative Understanding between Red Ginseng and White Ginsengs, Processed Ginsengs (Panax ginseng C. A. Meyer) (홍삼과 백삼의 비교 고찰)

  • Nam, Ki-Yeul
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • Ginseng Radix, the root of Panax ginseng C. A. Meyer has been used in Eastern Asia for 2000 years as a tonic and restorative, promoting health and longevity. Two varieties are commercially available: white ginseng(Ginseng Radix Alba) is produced by air-drying the root, while red ginseng(Ginseng Radix Rubra) is produced by steaming the root followed by drying. These two varieties of different processing have somewhat differences by heat processing between them. During the heat processing for preparing red ginseng, it has been found to exhibit inactivation of catabolic enzymes, thereby preventing deterioration of ginseng quality and the increased antioxidant-like substances which inhibit lipid peroxide formation, and also good gastro-intestinal absorption by gelatinization of starch. Moreover, studies of changes in ginsenosides composition due to different processing of ginseng roots have been undertaken. The results obtained showed that red ginseng differ from white ginseng due to the lack of acidic malonyl-ginsenosides. The heating procedure in red ginseng was proved to degrade the thermally unstable malonyl-ginsenoside into corresponding netural ginsenosides. Also the steaming process of red ginseng causes degradation or transformation of neutral ginsenosides. Ginsenosides $Rh_2,\;Rh_4,\;Rs_3,\;Rs_4\;and\;Rg_5$, found only in red ginseng, have been known to be hydrolyzed products derived from original saponin by heat processing, responsible for inhibitory effects on the growth of cancer cells through the induction of apoptosis. 20(S)-ginsenoside $Rg_3$ was also formed in red ginseng and was shown to exhibit vasorelaxation properties, antimetastatic activities, and anti-platelet aggregation activity. Recently, steamed red ginseng at high temperature was shown to provide enhance the yield of ginsenosides $Rg_3\;and\;Rg_5$ characteristic of red ginseng Additionally, one of non-saponin constituents, panaxytriol, was found to be structually transformed from polyacetylenic alcohol(panaxydol) showing cytotoxicity during the preparation of red ginseng and also maltol, antioxidant maillard product, from maltose and arginyl-fructosyl-glucose, amino acid derivative, from arginine and maltose. In regard to the in vitro and in vivo comparative biological activities, red ginseng was reported to show more potent activities on the antioxidant effect, anticarcinogenic effect and ameliorative effect on blood circulation than those of white ginseng. In oriental medicine, the ability of red ginseng to supplement the vacancy(허) was known to be relatively stronger than that of white ginseng, but very few are known on its comparative clinical studies. Further investigation on the preclinical and clinical experiments are needed to show the differences of indications and efficacies between red and white ginsengs on the basis of oriental medicines.