• Title/Summary/Keyword: anti-adipogenic effect

Search Result 128, Processing Time 0.027 seconds

Radical Scavenging and Anti-Obesity Effects of 50% Ethanol Extract from Fermented Curcuma longa L. (발효울금 50% 에탄올 추출물의 라디칼 소거능 및 지방형성 억제 효과)

  • Kim, Jihye;Jun, Woojin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.281-286
    • /
    • 2015
  • In this study, free radical scavenging activities (ABTS, DPPH, NBT, TBARS, and ORAC) and anti-obesity potential were evaluated using 50% ethanol extract from fermented Curcuma longa L. (FCE50). FCE50 showed free radical scavenging activities and anti-oxidant potential. Lipid accumulation and intracellular TG content were significantly reduced by 25.8% and 28.6%, respectively, by $250{\mu}g/mL$ of FCE50 compared to adipocytes. Glucose uptake was significantly reduced by 12.0%. FCE50 significantly reduced mRNA expression of acetyl-CoA carboxylase in 3T3-L1 cells. These results indicate that the anti-adipogenic effect of FCE50 might be due to its radical scavenging activity and anti-oxidant potential.

Roots Extract of Adenophora triphylla var. japonica Inhibits Adipogenesis in 3T3-L1 Cells through the Downregulation of IRS1

  • Kim, Hae Lim;Lee, Hae Jin;Choi, Bong-Keun;Park, Sung-Bum;Woo, Sung Min;Lee, Dong-Ryung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.3
    • /
    • pp.136-141
    • /
    • 2020
  • The purpose of this study was to investigate the action mechanism of the roots of Adenophora triphylla var. japonica extract (ATE) in 3T3-L1 adipocytes. Cell toxicity test by MTT assay and lipid accumulation was performed to evaluate the inhibitory effect on the differentiation of adipocyte from preadipocytes induced by MDI differentiation medium, while adipogenesis related proteins expression level were evaluated by western blotting. As a result, ATE inhibited MDI-induced adipocyte differentiation in 3T3-L1 cells dose-dependently without cytotoxicity. Our results showed that ATE inhibited the phosphorylation of IRS1, thereby decreasing the expression of PI3K110α and reducing the phosphorylation of AKT and mTOR, resulting in attenuated protein expression of C/EBPα, PPARγ, ap2 and FAS in 3T3-L1 cells. These results suggest anti-adipogenic functions for ATE, and identified IRS1 as a novel target for ATE in adipogenesis.

Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces

  • Park, Sun-Young;Cho, Seong-A;Kim, Sae-Hun;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.647-655
    • /
    • 2014
  • Obesity is strongly associated with several metabolic and chronic diseases and has become a major public health problem of worldwide concern. This study aimed to investigate the physiological characteristics and anti-obesity effects of Lactobacillus plantarum Q180. Lactobacillus plantarum Q180 was isolated from the faces of healthy adults and found to have a lipase inhibitory activity of $83.61{\pm}2.32%$ and inhibited adipocyte differentiation of 3T3-L1 cells ($14.63{\pm}1.37%$) at a concentration of $100{\mu}g/mL$. The strain was investigated for its physiological characteristics. The optimum growth temperature of L. plantarum Q180 was $37^{\circ}C$. Lactobacillus plantarum Q180 showed higher sensitivity to novobiocin in a comparison of fifteen different antibiotics and showed the highest resistance to rifampicin, polymyxin B and vancomycin. The strain showed higher ${\beta}$-galactosidase and N-acetyl-${\beta}$-glucosaminidase activities. It also did not produce carcinogenic enzymes such as ${\beta}$-glucuronidase. The survival rate of L. plantarum Q180 in MRS broth containing 0.3% bile was 97.8%. Moreover, the strain showed a 97.2% survival rate after incubation for 3 h in pH 2.0. Lactobacillus plantarum Q180 was displayed resistance to Escherichia coli, Salmonella Typhimurium and Staphylococcus aureus with rates of 55.6%, 38.0% and 47.6%, respectively. These results demonstrate that L. plantarum Q180 has potential as a probiotic with anti-obesity effects.

Anti-obesity effect of EGCG and glucosamine-6-phosphate through decreased expression of genes related to adipogenesis and cell cycle arrest in 3T3-L1 adipocytes (Adipogenesis관련 유전자발현감소와 Cell Cycle Arrest를 통한 EGCG와 Glucosamine-6-Phosphate의 Anti-Obesity 효과)

  • Kim, Kkot Byeol;Jang, Seong hee
    • Journal of Nutrition and Health
    • /
    • v.47 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Purpose: Several studies have proven that EGCG, the primary green tea catechin, and glucosamine-6-phosphate (PGlc) reduce triglyceride contents in 3T3-L1 adipocytes. The objective of this study is to evaluate the combination effect of EGCG and PGlc on decline of accumulated fat in differentiated 3T3-L1 adipocytes. Methods: EGCG and PGlc were administered for 6 day for differentiation of 3T3-L1 adipocytes. Cell viability was measured using the CCK assay kit. In addition, TG accumulation in culture 3T3-L1 adipocytes was investigated by Oil Red O staining. We examined the expres-sion level of several genes and proteins associated with adipogenesis and lipolysis using real-time RT-PCR and Western blot analysis. A flow cytometer Calibar was used to assess the effect of EGCG and PGluco on cell-cycle progression of differentiating 3T3-L1 cells. Results: Intracelluar lipid accumulation was significantly decreased by combination treatment with EGCG $60{\mu}M$ and PGlc $200{\mu}g/m$ compared with control and EGCG treatment alone. In addition, use of combination treatment resulted in directly decreased expression of $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP1. In addition, it inhibited adipocyte differentiation and adipogenesis through downstream regulation of adipogenic target genes such as FAS, ACSL1, and LPL, and the inhibitory action of EGCG and PGlc was found to inhibit the mitotic clonal expansion (MCE) process as evidenced by impaired cell cycle entry into S phase and the S to G2/M phase transition of confluent cells and levels of cell cycle regulating proteins such as cyclin A and CDK2. Conclusion: Combination treatment of EGCG and PGlc inhibited adipocyte differentiation through decreased expression of genes related to adipogenesis and adipogenic and cell cycle arrest in early stage of adipocyte differentiation.

Inhibition of Adipocyte Differentiation and Adipogenesis by the Extract from Sophora japonica Fruit (회화나무 열매 추출물에 의한 지방세포 분화 및 지방생성 억제)

  • Ji Min Jung;Su Hui Seong;Bo-Ram Kim;Jin-Ho Kim;Ha-Nul Lee;Chan Seo;Jung Eun Kim;Sua Im;Kyung-Min Choi;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.51-51
    • /
    • 2023
  • The world-wide rate of obesity is increasing continuously, representing a serious medical threat since it is associated with a variety of diseases including type 2 diabetes, cardiovascular disease, and numerous cancers. Sophora japonicais used as a traditional herb for medicinal purposes in eastern Asia. However, the anti-obesity effects of S. japonicafruit have not been explored. The aim of this study is to investigate the inhibition of adipocyte differentiation and adipogenesis by an ethanol extract of S. japonicafruit (EESF) in 3T3-L1 pre-adipocytes. Our results demonstrate that EESF suppressed the terminal differentiation of 3T3-L1 pre-adipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining. EESF significantly reduced the accumulation of cellular triglyceride, which was associated with a significant inhibition of the levels of pro-adipogenic transcription factors, including PPARγ, C/EBPα and C/EBPβ. In addition, EESF potentially down regulated the expression levels of adipocyte-specific proteins, including aP2 and leptin. In particular, EESF treatment effectively enhanced the activation of the AMPK signaling pathway; however, the co-treatment with compound C, an inhibitor of AMPK, significantly restored the EESF-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results indicate that EESF may exert an anti-obesity effect by controlling the AMPK signaling pathway, suggesting that the fruit extract of S. japonica may be a potential anti-obesity agent.

  • PDF

Antiadipogenic Effect of Vitis amurensis Root Methanol Extract and Its Solvent Fractions in 3T3-L1 Preadipocytes (머루근 추출물 및 분획물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Oh, You Na;Hyun, Sook Kyung;Choi, Yung Hyun;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 2013
  • Vitis amurensis Rupreche, a sort of grape, grows naturally in Asian countries. It is known for important biological effects such as antioxidation, anti-inflammation, neuroprotection, and angiogenesis inhibition. Although its root is used as a traditional folk medicine in Korea, the root's biological activities are poorly studied. In the present study, the effects of V. amurensis root methanol extract (VARM) and its solvent fractions on adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes were investigated. The VARM significantly suppressed adipocyte differentiation, lipid accumulation, and the triglyceride (TG) content of 3T3-L1 preadipocytes in a dose-dependent manner, without cytotoxicity. To identify active molecules, the VARM was fractionated with a series of organic solvents including dichloromethane ($CH_2Cl_2$), ethyl acetate (EtOAc), and n-butanol (n-BuOH). All the fractions also showed inhibition of lipid accumulation in the 3T3-L1 preadipocytes. The $CH_2Cl_2$ fraction showed the most powerful anti-obesity effect through the modulation of cytidine-cytidine-adenosine-adenosinethymidine (CCAAT)/enhancer binding protein ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene and protein expression. Oleanolic acid was one of the main active compounds involved in the anti-obesity activity of the V. amurensis root. These results provide important new insight into the potential potent anti-adipogenic effect of the V. amurensis root and illustrate that one of the main compounds involved in this effect is oleanolic acid.

Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells

  • Kim, Hwa-Jin;You, Mi-Kyoung;Lee, Young-Hyun;Kim, Hyun-Jung;Adhikari, Deepak;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.494-502
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at $4^{\circ}C$ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR-{\gamma}$), CCAAT/enhancer-binding proteins ${\alpha}$ (C/EBP ${\alpha}$), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 ($0-75{\mu}g/mL$) or its fractions ($0-50{\mu}g/mL$) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of $PPAR-{\gamma}$, C/EBP ${\alpha}$, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.

Possibility of Cancer Treatment by Cellular Differentiation into Adipocytes (지방세포로의 분화를 통한 악성 종양의 치료 가능성)

  • Byeong-Gyun Jeon;Sung-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.512-522
    • /
    • 2023
  • Cancer with unlimited cell growth is a leading cause of death globally. Various cancer treatments, including surgery, chemotherapy, radiation therapy, immunotherapy, and targeted therapy, can be applied alone or in combination depending on the cancer type and stage. New treatments with fewer side effects than previous cancer treatments are continually under development and in demand. Undifferentiated stem cells with unlimited cell growth are gradually changed via cellular differentiation to arrest cell growth. In this study, we reviewed the possibility of treating cancer by using cellular differentiation into the adipocytes in cancer cells. In previous in vitro studies, oral antidiabetic drugs of the thiazolidinedione (TDZ) class, such as rosiglitazone and pioglitazone, were induced into the adipocytes in various cancer cell lines via increased peroxisome proliferator-activated receptor-γ (PPAR γ) expression and glucose uptake, which is the key regulator of adipogenesis and the energy metabolism pathway. The differentiated adipogenic cancer cells treated with TDZ inhibited cell growth and had a less cellulotoxic effect. This adipogenic differentiation treatment suggests a possible chemotherapy option in cancer cells with high and abnormal glucose metabolism levels. However, the effects of the in vivo adipogenic differentiation treatment need to be thoroughly investigated in different types of stem and normal cells with other side effects.

Antioxidant and Anti-Adipogenic Effects of Ethanolic Extracts from Ixeris dentata Nakai (씀바귀 에탄올 추출물의 항산화 및 지방세포 분화억제 효과)

  • Park, Sung-Jin
    • Culinary science and hospitality research
    • /
    • v.20 no.1
    • /
    • pp.133-142
    • /
    • 2014
  • The aim of this study was to evaluate the total phenol, total flavonoids contents and antioxidant activity of 80% ethanolic extract from Ixeris dentata Nakai(IDE) as well as to assess the lipid accumulation during adipogenesis of 3T3-L1 cells. The results demonstrated that the total phenolic and flavonoids contents of the IDE were $4.01{\pm}0.63$ GAE mg/g and $0.05{\pm}0.01$ RE mg/g, respectively. The antioxidative activities of the IDE were significantly increased in a dose dependent manner on DPPH(1,1-Diphenyl-2-picrylhydrazyl) radical scavenging, ABTS(2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt) radical scavenging, reducing power value. During adipocyte differentiation, IDE significantly inhibited lipid accumulation compared with the control cells. These results indicated that the anti-adipogenesis effect of Ixeris dentata Nakai could be attributed to phenolic compounds that may potentially inhibit ROS(reactive oxygen species) production.

Anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar in mice fed a high-fat diet

  • Park, Ki-Moon;Lee, Seung Ho
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.453-459
    • /
    • 2013
  • The abnormal content of blood lipids often results in metabolic diseases, such as hyperlipidemia and obesity. Many agents, including natural sources from traditional food, have been developed to regulate the blood lipid contents. In this study, we examined the anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar (RNSpBRV), a Korean traditional pickled soybean food. Since RNSpBRV is made of R. nulubilis seeds (RNS) soaked in brown rice vinegar (BRV), we compared the anti-adipogenic activity between RNS, BRV and solid fraction of RNSpBRV (SF-RNSpBRV), liquid fraction of RNSpBRV (LF-RNSpBRV). For this, the inhibitory effect of lipid accumulation in 3T3-L1 adipocyte was checked by adding methanol extracts of mixed RNS and BRV, LF-RNSpBRV, and SF-RNSpBRV. The addition of each methanol extract up to 1 mg/ml showed no cytotoxicity on 3T3-L1 adipocyte, and approximately 20% of the lipid droplet formation was suppressed with the methanol extract of BRL or SF-RNSpBRV. The highest suppression (42.1%) was achieved with LF-RNSpBRV. In addition, mice fed a high fat diet (HFD) supplemented with 5% RNSpBRV powder led to increased high density lipoprotein (HDL) cholesterol and lower blood glucose, triglyceride, and total cholesterol compared to mice fed with a HFD diet only. Interestingly, the size of the epididymis cells gradually decreased in HFD + 1% RNSpBRV and HFD + 5% RNSpBRV-fed mice if compared those of HFD-fed mice. Taken together, these results provide evidence that RNSpBRV has a regulatory role in lipid metabolism that is related to hyperlipidemia.