• Title/Summary/Keyword: anti-Inflammatory

Search Result 6,079, Processing Time 0.032 seconds

Biological Activity of Fermented Gryllus bimaculatus extracts (발효 쌍별귀뚜라미 추출물의 생리활성 연구)

  • Park, In-Sun;Lim, Hyeon-Ji;Jeong, Seung-Il;Jung, Chan-Hun
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.2
    • /
    • pp.92-98
    • /
    • 2021
  • Gryllus bimaculatus extract (GbE) have reported that anti-inflammatory activity by suppression of pro-inflammatory cytokines. However, the effects of fermented Gryllus bimaculatus extract (FGbE) have not yet been investigated. In this study, we evaluated the anti-inflammatory and anti-wrinkle effect of the fermented Gryllus bimaculatus extracts using Bacillus subtilis (JB PMB-18) in RAW264.7 cells. Both GbE and FGbE exerted no cytotoxic effects until 1000 ㎍/mL concentration. FGbE decreased NO production and decreased iNOS and COX-2 mRNA levels in a concentration-dependent manner. In addition, the protein production of inflammatory cytokines TNF-α, IL-1β and IL-6 was effectively reduced compared to the GbE. Inhibitory activities of elastase and collagenase associated with skin wrinkle improvement were measured to be 45% and 69%, respectively, at a concentration of 500 ㎍/mL in FGbE. From these results, FGbE can be used as a health functional food and skin functional cosmetic materials for preventing inflammatory diseases because it has excellent anti-inflammatory and anti-wrinkle effects.

Modulation of Inflammatory Pathways and Adipogenesis by the Action of Gentisic Acid in RAW 264.7 and 3T3-L1 Cell Lines

  • Kang, Min-jae;Choi, Woosuk;Yoo, Seung Hyun;Nam, Soo-Wan;Shin, Pyung-Gyun;Kim, Keun Ki;Kim, Gun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1079-1087
    • /
    • 2021
  • Gentisic acid (GA), a benzoic acid derivative present in various food ingredients, has been shown to have diverse pharmaceutical activities such as anti-carcinogenic, antioxidant, and hepatoprotective effects. In this study, we used a co-culture system to investigate the mechanisms of the anti-inflammatory and anti-adipogenic effects of GA on macrophages and adipocytes, respectively, as well as its effect on obesity-related chronic inflammation. We found that GA effectively suppressed lipopolysaccharide-stimulated inflammatory responses by controlling the production of nitric oxide and pro-inflammatory cytokines and modulating inflammation-related protein pathways. GA treatment also inhibited lipid accumulation in adipocytes by modulating the expression of major adipogenic transcription factors and their upstream protein pathways. Furthermore, in the macrophage-adipocyte co-culture system, GA decreased the production of obesity-related cytokines. These results indicate that GA possesses effective anti-inflammatory and anti-adipogenic activities and may be used in developing treatments for the management of obesity-related chronic inflammatory diseases.

UHPLC/TOFHRMS analysis and anti-inflammatory effect of leaf extracts from Zizyphus jujuba in LPS-stimulated RAW264.7 cells

  • Hyun Ji Eo;Sun-Young Lee;Gwang Hun Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.27-33
    • /
    • 2023
  • Zizyphus jujube is a plant in the buckthorn family (Rhamnaceae) that has been the subject of research into antibacterial, antifungal and anti-inflammatory properties of its fruit and seed. However, few studies have investigated its leaves. In this study, the anti-inflammatory activity of ZJL (an extract of Z. jujube leaf) was evaluated to verify its potential as an anti-inflammatory agent and SARS-CoV-2 medicine, using nitric oxide (NO) assay, RT-PCR, SDSPAGE, Western blotting, and UHPLC/TOFHRMS analysis. We found that ZJL suppresed pro-inflammatory mediators such as NO, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. ZJL acted by inhibiting NF-KB and MAPK signaling pathway activity. We also confirmed that ZJL contains a phenol compound and flavonoids with anti-inflammatory activity such as trehalose, maleate, epigallocatechin, hyperoside, catechin, 3-O-coumaroylquinic acid, rhoifolin, gossypin, kaempferol 3-neohesperidoside, rutin, myricitrin, guaiaverin, quercitrin, quercetin, ursolic acid, and pheophorbide a. These findings suggest that ZJL may have great potential for the development of anti-inflammatory drugs and vaccines via inhibition of NF-κB and MAPK signaling in LPS-induced RAW264.7 cells.

New Radiolytic Cyclization Products, Phlorocyclin and Isophlorocyclin Exhibit Anti-inflammatory Effects in LPS-stimulated Macrophages

  • Tae Hoon Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2024
  • Phlorocyclin (PC) and isophorocyclin (IPC) are rare benzofuran derivaitves obtained from the representive dihydrochalcone glucoside, phloridzin (PZ) and are a type of neolignan backbone with a potential anti-glycative agents. However, research related to the enhancement of biological functionallites to inflammation of the newly converted products is very limited. This research was directed with the purpose of discovery more effective anti-inflammatory agents in macrophages of newly radiolysis products PC and IPC. The anti-inflammatory capacities of the characterized products in RAW 264.7 and DH82 macrophages treated with lipopolysaccharide (LPS) to stimulate an inflammation response were examined. The pro-inflammatory factors such as prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), nitric oxide (NO), interleukin-6 (IL-6), and IL-10, without cytotoxicity in LPS-stimulated macrophages, were significantly inhibited after treatment with PC and IPC, when compared to PZ. Moreover, PC and IPC decreased the appearance of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) proteins in macrophages. The cyclization products modified by radiolysis showed the greatest anti-inflammatory effects in macrophage cells, indicating PC and IPC are a potential candidate for use in anti-inflammatory agents.

Antimicrobial and Anti-Inflammatory Potential of Euphorbia paralias (L.): a bioprospecting study with phytoconstituents analysis

  • Ahmed Mohamed Mohamed Youssef;Thabet Hasan Ahmad Althneibat;Doaa Ahmed Mohamed Maaty;Yasser Gaber
    • Journal of Pharmacopuncture
    • /
    • v.27 no.3
    • /
    • pp.223-233
    • /
    • 2024
  • Objectives: The phytochemicals in the aerial parts of Euphorbia paralias (also known as Sea Spurge) and their anti-inflammatory and antimicrobial activities were investigated. Methods: The methanolic extract was characterized using GC-MS and HPLC techniques. The anti-inflammatory feature was estimated through a Human Red Blood Cell (HRBC) membrane stabilization technique, while the antimicrobial feature was evaluated by the disc diffusion agar technique, minimum bactericidal concentration, and minimum inhibitory concentration (MIC) via micro-broth dilution method. Results: The GC/MS results demonstrated the existence of various phytochemicals, such as n-hexadecenoic acid, cis-11-eicosenoic acid, and methyl stearate, recognized for their anti-inflammatory and antibacterial features. The similarity of the phytochemical composition with other Euphorbia species emphasizes the genus-wide similarity. The anti-inflammatory activity exhibited a noteworthy inhibitory effect comparable to the reference drug indomethacin. The extract's antimicrobial potential was tested against a range of microorganisms, demonstrating significant action against Gram-positive bacteria and Candida albicans. The quantification of total phenolics and flavonoids further supported the therapeutic potential of the extract. Conclusion: The methanolic extract from E. paralias emerges as a successful natural source of important active constituents with potential applications as anti-inflammatory and antimicrobial agents. This research provides a first step to valorize Euphorbia paralias insights as a source of worthwhile phytochemicals that have potential applications in the pharmaceutical industry.

Anti-inflammatory Effects of Abeliophyllum distichum Flower Extract and Associated MAPKs and NF-κB Pathway in Raw264.7 Cells

  • Lee, Jin-Wook;Kang, Yoon-Joong
    • Korean Journal of Plant Resources
    • /
    • v.31 no.3
    • /
    • pp.202-210
    • /
    • 2018
  • Abeliophyllum distichum is a medicinal plant used in regional traditional medicine to relieve pain in inflammatory processes. In this study, anti-inflammatory effects of Abeliophyllum distichum flower (ADF) extract were examined. Furthermore, possible molecular mechanisms of the anti-inflammatory effects were dissected. The anti-inflammatory activity was investigated by inhibition of lipopolysaccharide (LPS) induced pro-inflammatory cytokine production in murine macrophage-like cell line Raw264.7 cells. The measurement of the induced pro-inflammatory cytokine levels were carried out by ELISA. The phosphorylation of ERK1/2, JNK, and MAPK, and the nuclear expression of nuclear factor NF-${\kappa}B$ p65 were investigated by Western blot analysis. The extract of ADF significantly decreased the production of pro-inflammatory cytokines. In addition, the extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of NF-${\kappa}B$ p65 in activated cells. Our findings provide evidence for the popular use of Abeliophylli distichum in inflammation around Goesan region and also suggest that the flower extract has potential therapeutic benefits against various inflammatory diseases.

The Anti-inflammatory Mechanism of the Peel of Zanthoxylum piperitum D.C. is by Suppressing NF-κB/Caspase-1 Activation in LPS-Induced RAW264.7 Cells

  • Choi, Yun-Hee;Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.669-676
    • /
    • 2019
  • Zanthoxylum piperitum D.C. (ZP) peels has been used as a natural spice and herb medicine for hypertension reduction, for strokes, and for its anti-bacterial and anti-oxidant activity. However, the anti-inflammatory mechanisms employed by ZP have yet to be completely understood. In this study, we elucidate the anti-inflammatory mechanism of ZP in lipopolysaccharide (LPS)-induced RAW264.7 cells. We evaluated the effects of ZP in LPS-induced levels of inflammatory cytokines, prostaglandin E2 (PGE2), and caspase-1 using ELISA. The expression levels of inflammatory-related genes, including cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), were assayed by Western blot analysis. We elucidated the effect of ZP on nuclear factor (NF)-κB activation by means of a luciferase activity assay. The findings of this study demonstrated that ZP inhibited the production of inflammatory cytokine and PGE2 and inhibited the increased levels of COX-2 and iNOS caused by LPS. Additionally, we showed that the anti-inflammatory effect of ZP arises by suppressing the activation of NF-κB and caspase-1 in LPS- induced RAW264.7 cells. These results provide novel insights into the pharmacological actions of ZP as a potential candidate for development of new drugs to treat inflammatory diseases.

Anti-inflammatory effects of a methanol extract from Pulsatilla koreana in lipopolysaccharide-exposed rats

  • Lee, Sang-Hyun;Lee, Eun;Ko, Young-Tag
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.371-376
    • /
    • 2012
  • To investigate the therapeutic effect of a Korean herbal medicine Pulsatilla koreana as an anti-septic agent, anti-inflammatory effects of the herbal medicine were determined in lipopolysaccharide (LPS)-exposed rats. Treatment with a methanol extract from Pulsatilla koreana significantly inhibited LPS-induced inflammatory responses. Results from ELISA analysis showed that Pulsatilla koreana decreased the plasma and hepatic levels of pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$ while increased the level of anti-inflammatory cytokine IL-10 in LPS-exposed rats. Pulsatilla koreana also decreased the plasma levels of other inflammatory mediators such as $NO_3{^-}/NO_2{^-}$, ICAM-1, $PGE_2$, and CINC-1 in LPS-exposed rats. Although no significant effects were observed in the phagocytic activities, the distribution of lymphocyte population was significantly shifted by the treatment with Pulsatilla koreana. All together, Pulsatilla koreana exerts anti-inflammatory activities in the immune-challenged animals implicating that this Korean herbal medicine is therapeutically useful for the treatment of inflammatory diseases like sepsis.

Flavonoid and Skin Inflammation

  • Kim, Hyun-Pyo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.67-73
    • /
    • 2007
  • There have been various inflammatory skin disorders in humans including atopic dermatitis, eczema and psoriasis. Although some drugs have been used for these disorders, there is an urgent need for safer and more effective topical anti-inflammatory agents. Plant flavonoids possess anti-inflammatory activity and some of them have multiple pharmacological mechanisms, inhibition of eicosanoid metabolizing enzymes, histamine release and/or down-regulation of pro inflammatory gene expression. These properties of flavonoids may be suitable for treating chronic skin inflammatory disorders. Especially, wogonin, some prenylated flavonoids and biflavonoids have a strong potential as new anti-inflammatory agents by topical application.

  • PDF

Anti-oxidant and Anti-inflammatory Effects of Rutin and Its Metabolites

  • Kim, Ji Hye;Park, Sang Hee;Beak, Eun Ji;Han, Chang Hee;Kang, Nam Joo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.3
    • /
    • pp.165-169
    • /
    • 2013
  • Rutin is one of the major flavonoids found in buckwheat (Fagopyrum esculentum Moench). While rutin is already known to exhibit anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. However, the health beneficial function of rutin metabolites is not well understood. In DPPH radical scavenging assays, the present study found that 3,4-dihydroxyphenyl acetic acid had the highest total anti-oxidant activity, followed by 3,4-dihydroxyphenylacetic acid, rutin, homovanillic acid, and 3-hydroxyphenyl acetic acid. Further, 3,4-dihydroxyphenylacetic acid strongly reduced LPS-induced IL-6 production in RAW 264.7 cells, compared with other metabolites. Therefore, these results suggest that rutin metabolites have potential to be utilized as food ingredients with anti-oxidant and anti-inflammatory activities.

  • PDF