• Title/Summary/Keyword: anti inflammatory

Search Result 5,985, Processing Time 0.031 seconds

Anti-inflammatory Effects of Earthing Mattress in Mouse (Balb/c 생쥐에 대한 어싱 매트리스에 의한 항염 효과)

  • Kim, Ji Youn
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.3
    • /
    • pp.89-93
    • /
    • 2022
  • Earthing, caused by direct skin contact with the Earth's surface, is used to reduce the symptoms of inflammation (fever, fever, swelling and pain). However, there is little evidence to support the anti-inflammatory effects of earthing mattresses. Therefore, this study was conducted to investigate whether anti-inflammatory effect of earthing mattress using an in vivo animal model. The anti - inflammatory effect was evaluated by measuring ear thickness and foot volume in 12-O-tetradecanoylphorbol-13 acetate (TPA) - induced ear edema and carrageenan - induced paw edema model, respectively. Balb/c mouse in carrageenan paw edema model showed significant anti - inflammatory effect in the group treated with earthing mattress for 4 hours or 24 hours for 3 days. For females, the anti-inflammatory effect was greater when the earthing mattress was added to the mattress than the mattress alone treatment. From the above results, it was found that the female responds more to the effect of the earthing as well as the mattress effect. In addition, when the male and female Balb/c mice were exposed to mattresses and earthing mattresses for 24 h for 3 days, respectively, the mattress and earthing mattresses showed significant inhibition of IL (Interleukin)-1β levels compared to the control. In the TPA ear edema model, Balb/c mouse showed significant anti - inflammatory effect in the group treated with the earthing mattress for 4 hours or 24 hours for 3 days. Both males and females showed more anti-inflammatory effects when they were exposed to earthing mattresses with mattresses added to the mattresses. From the above results, it was found that both male and female respond to the effect of earthing as well as the mattress effect in the TPA ear edema model. In conclusion, in this study, we have verified that earthing mattress shows inhibitory effects on TPA and carrageenan-induced inflammation. From these results, it is suggested that the anti-inflammatory effect can be expected by applying the earthing mattress to patients suffering from inflammatory diseases. However, there is a need to pinpoint exactly how the earthing mattress relieves inflammation, and further research is needed to investigate the mechanism.

Anti-inflammatory Effects of Gelidium amansii in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 Gelidium amansii의 항염증 효과)

  • Choi, Won-Sik;Kim, Young-Sun;Lee, Sang-Hyun;Chai, Kyu-Yun;Lee, Young-Haeng
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.673-677
    • /
    • 2009
  • In order to verify the anti-inflammatory effects of Gelidium amansii, RAW264.7 macrophages were incubated with the extract of 70% ethanol solution (Ex), and activated with the endotoxin lipopolysaccharide (LPS). Ex inhibited the expression of the pro-inflammatory enzymes, including inducible nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of iNOS-mediated NO and COX-2-mediated prostglandin $E_2$ ($PGE_2$) production in a dose-dependent manner. Ex also reduced the release of the pro-inflammatory cytokines, including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-1${\beta}$ (IL-1${\beta}$) and IL-6 in LPS-activated macrophages, The observed anti-inflammatory effects of Ex was associated with inactivation of the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) that mediates the induction of iNOS, COX-2, TNF-${\alpha}$, IL-1${\beta}$, and IL-6. Further studies showed that Ex inactivated NF-${\kappa}B$ through inhibition of phosphorylation of the inhibitory ${\kappa}B$ ($l{\kappa}B$), Taken together, these results suggest that Gelidium amansii exerts anti-inflammatory effects by inhibiting the expression of pro-inflammatory enzymes and the secretion of pro-inflammatory cytokines via inactivation of NF-${\kappa}B$ and/or $l{\kappa}B$.

Anti-allergic and Anti-inflammatory Actions of Cimicifuga heracleifolia: Partial Purification of Active Components

  • Kim, Young-Ran;Park, Soo-Hyung;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.2 no.2
    • /
    • pp.149-154
    • /
    • 1994
  • Anti-allergic and anti-inflammatory actions of the water extract from Cimicifuga heracleifolia were evaluated in mice and rats. Several criteria were employed to assess the anti-allergic and anti-inflammatory actions of Cimicifuga heracleifolia, such as hyaluronidase activity, mediators-induced vascular permeability changes, 48 hour homologous passive cutaneous anaphylaxis (PCA) histamine release from mast cells, and the carrageenan-induced rat paw edema. To further characterize the active components, the water extract was either extracted with organic solvent or fractionated according to molecular weight, and each fraction was tested for some of anti-allergic parameters. Hyaluronidase activities, both in activating and in activated states, were significantly inhibited by the water extract of Cimicifuga heracleifolia and by some of its subfractions, molecular weight less than 1,000. The water extracts (50~400 mg/kg) significantly inhibited 48 hr homologous PCA and vascular permeability changes induced by chemical mediators (histamine, serotonin, and leukotriene $C_4$) in mice. In the case of histamine-induced vascular permeability changes, more extensive studies were conducted; water extract was either fractionated according to molecular weight or extracted with butanol. Anti-histamine actions were observed only from the water layer, and these active components were of the molecular weight less than 1,000. These anti-allergic actions were observed mainly from mice than from rats. On the other hand, anti-inflammatory actions of the water extract from Cimicifuga heracleifolia were significant in rats.

  • PDF

Anti-oxidative and Anti-inflammatory Constituents from the Extracts of Brassica napus L. Whole Plant (유채 전초 추출물 유래 항산화 및 항염 활성 성분)

  • Jo, Yeon Jeong;Hyun, Ju Mi;Kang, Ji Mi;Kim, Chang Yun;Lee, Nam Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.3
    • /
    • pp.125-132
    • /
    • 2022
  • In this study, we investigated anti-oxidative and anti-inflammatory efficacy, and identified their constituents from Brassica napus L. (Korean name: Yuchae) whole plant. Upon the anti-oxidative activities screening, the ethanol extract exhibited potent DPPH and ABTS+ radical scavenging activities. On the anti-inflammation studies using LPS-induced RAW264.7 cells, the extract inhibited the production of NO and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) effectively. To identify major constituents of B. napus extract, further purification was performed and led to isolation of two compounds; isorhamnetin 3,7-O-diglucoside(1) and isorhamnetin 3-O-glucoside(2). Quantitative analysis by high pressure liquid chromatography (HPLC) determined the flavonoid 1 as the major constituent. Isolated compounds showed DPPH radical scavenging effects and decreased NO levels without causing cell toxicities. These results indicate that the extract of Yuchae, a rich plant resource in Jeju Island, could be potentially applicable as an anti-oxidative and/or anti-inflammatory ingredients.

The Anti-depressive Effect of Rehmanniae Radix Preparata via Anti-inflammatory Activity (숙지황 추출물의 항염증 작용을 통한 항우울 효과)

  • Kim, Eung Sun;Chong, Myongsoo
    • The Journal of Korean Medicine
    • /
    • v.43 no.1
    • /
    • pp.99-111
    • /
    • 2022
  • Objectives: Rehmanniae Radix Preparata (RRP) has been used as a traditional remedy to treat gynecology and endocrine diseases. Recently, studies on antioxidant and anti-inflammatory effects of RRP have been reported, so it was judged that RRP extracts would have an anti-depressive effect. Methods: We investigated the anti-neuroinflammatory and anti-depressive effect of RRP on lipopolysaccharide (LPS)-induced depression and LPS-stimulated BV2 microglia. RRP inhibited the LPS-stimulated excessive release of nitrite in the BV2 cells. RRP also significantly inhibited the inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 in LPS-stimulated BV2 microglial cells. Results: RRP significantly suppressed the LPS-induced mitogen-activated protein kinase (MAPKs) and nuclear factor (NF)-𝜅B activation. In addition, administration of RRP not only inhibited the immobility time in the forced swimming test (FST) but also increased the total travel distance in the open field test (OFT). Also, RRP inhibited the elevation of TNF-alpha, IL-1beta, and IL-6 in brain of LPS-injected mice. Conclusions: Considering the overall results, our study showed that RRP exhibited the anti-neuroinflammatory and anti-depressive activities via deactivation of MAPKs and NF-𝜅B.

Anti-nociceptive and anti-inflammatory activities of the essential oil isolated from Cupressus arizonica Greene fruits

  • Fakhri, Sajad;Jafarian, Safoora;Majnooni, Mohammad Bagher;Farzaei, Mohammad Hosein;Mohammadi-Noori, Ehsan;Khan, Haroon
    • The Korean Journal of Pain
    • /
    • v.35 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Background: Cupressus arizonica Greene is a coniferous tree with great importance in fragrance and pharmaceutical industries. Essential oils from C. arizonica (EC) have shown potential antioxidant, and anti-microbial activities. This study aimed at investigating the anti-nociceptive and anti-inflammatory effects/mechanisms of EC. Methods: The EC was evaluated for anti-nociceptive and anti-inflammatory activities on male Wistar rats using a formalin test and carrageenan-induced paw edema, respectively. Also, we pre-treated some of the animals with naloxone and flumazenil in the formalin test to find out the possible contributions of opioid and benzodiazepine receptors to EC anti-nociceptive effects. Finally, gas chromatography/mass spectrometry (GC/MS) analysis was used to identify the EC's constituents. Results: EC in intraperitoneal doses of 0.5 and 1 g/kg significantly decrease the nociceptive responses in both early and late phases of the formalin test. From a mechanistic point of view, flumazenil administration 20 minutes before the most effective dose of EC (1 g/kg) showed a meaningful reduction in the associated anti-nociceptive responses during the early and late phases of the formalin test. Naloxone also reduced the anti-nociceptive role of EC in the late phase. Furthermore, EC at the doses of 1, 0.5, and 0.25 g/kg significantly reduced paw edema from 0.5 hours after carrageenan injection to 4 hours. GC/MS analysis showed that isolated EC is a monoterpene-rich oil with the major presence of α-pinene (71.92%), myrcene (6.37%), δ-3-carene (4.68%), β-pinene (3.71%), and limonene (3.34%). Conclusions: EC showed potent anti-nociceptive and anti-inflammatory activities with the relative involvement of opioid and benzodiazepine receptors.

Molecular Events on Experimental Skin Inflammation and Modulation by Topical Anti-inflammatory Flavonoids

  • Kim, Hyun-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2007
  • There have been various animal models of skin inflammation. These models have been used for establishing anti-inflammatory activity of the topical agents including cosmetics. Here, the molecular mechanisms of most widely-used animal models of skin inflammation including contact irritation, acute and chronic inflammation, and delayed-type hypersensitivity are summarized. Against these animal models, varieties of plant flavonoids showed anti-inflammatory activity. The action mechanisms of anti-inflammation by topical flavonoids are presented. A therapeutic potential of flavonoids is discussed.

Some Pharmacological Activities of Acanthoic Acid Isolated from Acanthopanax koreanum Root Bark (섬모갈피나무의 근피성분, Acanthoic acid의 약리작용)

  • 이영순;이은방;김영호
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.176-182
    • /
    • 2001
  • Some pharmacological activities of acanthoic acid, isolated from Acanthopanax koreanum root was investigated in animals. It is revealed that the compound had analgesic and anti-inflammatory activities without actions on central nervous system and showed inhibition of lipid peroxidation. The anti-inflammatory activity might be related to inhibition of prostaglandin E$_2$ synthesis in exudates of inflammation.

  • PDF

Recent Advances in Anti-inflammatory Flavonoid Research since 2004

  • Kim Hyun-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2006
  • Certain flavonoids possess anti-inflammatory activity. Besides their antioxidative property, the cellular action mechanisms of flavonoids include an inhibition of arachidonate metabolizing enzymes such as cyclooxygenases and lipoxygenases, and a down-regulation of proinflammatory gene expression such as cyclooxygenase-2, inducible nitric oxide synthase and tumor necrosis factor-$\alpha$. In this review, the recent findings of anti-inflammatory flavonoid research since 2004 were summarized. And the cellular mechanisms on signal transduction pathways were also discussed.

Anti-inflammatory, Analgesic and Ulcerogenic Activities of Fentiazac (Fentiazac의 항염증. 진통 및 소화기궤양 형성작용에 관한 연구)

  • 김충규;김원배;양중익;민신홍
    • YAKHAK HOEJI
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 1981
  • Anti-infammatory, analgesic and ulcerogenic activities of fentiazac were investigated in comparison with those of acetylsalicylic acid, fenbufen, naproxen and phenylbutazone. On the anti-inflammatory activity in carrageenin-induced rat paw edema and the analgesic activity on writhing syndrome induced with acetic acid in mice, fentiazac displayed more potent effect than acetylsalicylic acid, fenbufen and pbenylbutazone. But the ulcerogenic action of fentiazac on gastrointestinal tract in fasting rats was less than that of reference drugs. From these investigation, fentiazac seemed to indicate a poor correlation between the extent of anti-inflammatory activity and ulcerogenic action.

  • PDF