• Title/Summary/Keyword: anti corrosion

Search Result 340, Processing Time 0.027 seconds

Anti-Corrosion Characteristics of Steel Structures with Polyaniline Anti-Corrosive Coatings (강 구조물에 대한 폴리아닐린 함유도료의 방청특성)

  • Song, Min-Kyung;Kong, Seung-Dae;Oh, Eun-Ha;Yoon, Hun-Cheol;Kim, Yoon-Shin;Im, Ho-Sub
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.236-246
    • /
    • 2010
  • In preparative anti-corrosive coating experiments, polyaniline was obtained by reacting an oxidizing agent with the monomer aniline. Further, the primer coating was prepared using a variety of widely-used materials such as urethane resin. For the top coating, epoxy resin and acrylic urethane resin were used. Characteristics of the coatings were assessed according to KS and ASTM specifications, and the structure of the polyaniline was characterized using FT-IR and TGA. For analysis of anti-corrosive properties in salt-spray experiments, measurements of the oxidation state of iron and surface atomic analysis were conducted using XPS and SEM-EDX. Unlike general anti-corrosive coatings which exhibit anti-corrosive effects only as a primer coating, the anti-corrosive coatings using polyaniline as the anti-corrosive pigment showed a marked synergistic effect with the top coatings. In other words, the top coatings not only produce a fine view effect, but also increase, through interaction with the primer coatings, the resistance to diffusion of corrosive factors from the external environment. It was also found that, unlike the heavy metal oxide-forming layer of the passive barrier alone, the polyaniline anti-corrosive pigment oxidized iron at the interface with the iron substrate to form a passive barrier in the oxidic layer, and itself formed a potential barrier layer with anti-corrosive factors from the external environment. Although the passive layer was damaged, the damaged area did not become completely oxidized iron; on the contrary, it showed a tendency to reduction. This can be interpreted such that a passive layer is formed again on the damaged area, and that at the same time there is a tendency to self-healing.

Study on Corrosion Properties of Additive Manufactured 316L Stainless Steel and Alloy 625 in Seawater

  • Jung, Geun-Su;Park, Yong-Ha;Kim, Dae-Jung;Lim, Chae-Seon
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.258-266
    • /
    • 2019
  • The objective of this study was to evaluate corrosion resistance of additive manufactured 316L stainless steel and alloy 625 powders widely used in corrosion resistance alloys of marine industry in comparison with cast alloys. Directed Energy Deposition (DED) method was used in this work for sample production. DED parameter adjustment was also studied for optimum manufacturing and for minimizing the influence of defects on corrosion property. Additive manufactured alloys showed lower corrosion resistance in seawater compared to cast alloys. The reason for the degradation of anti-corrosion property was speculated to be due to loss of microstructural integrity intrinsic to the additive manufacturing process. Application of heat treatment with various conditions after DED was attempted. The effect of heat treatments was analyzed with a microstructure study. It was found that 316L and alloy 625 produced by the DED process could recover their expected corrosion resistance when heat treated at 1200 ℃.

The Effect of Compressive Residual Stress of Spring Steel for Vehicle on Corrosion (차량용 스프링강재의 압축잔류응력이 부식에 미치는 영향)

  • Park Keyungdong;An Jaepil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.159-165
    • /
    • 2005
  • Shot peening can be defined as the process of work hardening of the surface of components by means of propelled stream of spherical shot. Benefits due to shot peening are increase in resistance to fatigue, stress corrosion cracking, fretting, galling, erosion and closing of pores. In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in $3.5\%\;NaCl$. The immersion test was performed on the two kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated. The important results of the experimental study on the effects of shot peened spring steels on the environment corrosion are as follows; In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent metal. Surface of specimen, which is treated with the shot peened, is placed as more activated state against inner base metal. It can cause the anti-corrosion effect on the base metal.

Valorization of Cork Waste to Improve the Anti-Corrosion Properties of Concrete Reinforcements

  • Belkhir, S.;Bensabra, H.;Chopart, J.P.
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.100-110
    • /
    • 2022
  • Corrosion of steel reinforcement is the most important mode of concrete structures damages. It strongly depends on the composition and physicochemical properties of the cementitious medium. The use of waste materials as lightweight aggregates in concrete is environmentally recommended in polluted environments such as marine and/or industrial atmospheres in order to reduce its porosity and ensure the requested protection of reinforcing steel. The present study investigated the effect of waste cork addition on corrosion resistance of steel rebar in mortar specimen prepared in the laboratory. The main objective of this study was to improve the corrosion resistance of reinforcing steel. Another objective of this study was to valorize this ecological product and preserve the environment. Results obtained from various electrochemical tests indicated that the presence of a fine cork powder substantially improved the corrosion resistance of steel in the mortar contaminated by chloride ions. This improvement was reflected by a notable decrease in corrosion current density and a shift of corrosion potential of the steel towards more noble values. Moreover, the presence of a fine cork powder in the mortar had no adverse effect on its mechanical properties.

Anti-corrosion impact of green synthesis of Silica nanoparticles for the sports structures in physical exercise activities

  • Zhixin Zhang;Zhiqiang Cai;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Sport has no age limit and can be done anywhere and in any condition with minimal equipment. The existence of sports spaces in all parts of the world is considered a citizen's right. One of the activities carried out in this field is installing sports equipment and structures in parks and encouraging citizens to use this equipment for physical health with the least cost and facilities. Installing sports structures in open spaces such as parks is a practical step for developing citizens' sports. Although using devices in parks is acceptable, it is more critical to meet scientific and technical standards. The components of these structures must have high strength and endurance against changes in environmental conditions such as humidity, temperature difference, and corrosion. Among the various causes of material degradation, corrosion has always been one of several fundamental causes of metal equipment failure. Sports structures in open spaces are not safe from corrosion. Uniform corrosion is the most common type of corrosion. This corrosion usually occurs uniformly through a chemical or electrochemical reaction across the surface exposed to the corrosive environment. Rust and corrosion of outdoor sports structures are examples of this corrosion. For this reason, in this research, with the green synthesis of silica nanoparticles and its application in outdoor sports structures, the life span of these structures can be increased for the use of physical exercises as well as their quality.

Study on the Corrosion and Cavitation Erosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식과 캐비테이션 침식 방지에 관한 연구)

  • Lim, Uh Joh;Kim, Seong Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.359-365
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of $Cl^-$. Generally, to protect these accidents, mainly applied anti-corrosion paint and epoxy coating. But it was still remained erosion-corrosion damage such as impingement erosion, cavitation erosion, deposit attack. There was needs to develope the new coating materials to protective those corrosion damages. This paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS were investigated electrochemical tests and cavitation erosion test for corrosion behaviour under sea water. The main results obtained are as follows, 1) Surface of epoxy coating appear erosion pin hole but surface of polyester glass flake and vinylester glass flake lining do not appear erosion pin hole after impingement-cavitation erosion test in sea water. 2) Weight loss of polyester glass flake and vinylester glass flake lining do not occur after impingement-cavitation erosion test in sea water. 3) Corrosion current density of polyester glass flake lining less drained than epoxy coating and substrate under corrosion potential.. 4) Corrosion current density of vinylester glass flake lining with three coating less drained than that of polyester glass flake lining with two coating.

  • PDF

Empirical Study on water wall tube corrosion mechanism for Tangential type coal fired power plant boiler (석탄화력발전소 보일러의 수냉벽튜브 부식 메카니즘에 대한 실증적 고찰)

  • Baek, Sehyun;Kim, HyunHee;Park, Hoyoung;Ko, SungHo
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • In this study, boiler tube thickness measurement and numerical analysis were conducted for standard 500MW coal-fired power plant in order to research the mechanism of tangential-fired boiler corrosion empirically. The most dominant corrosion mechanism of tangential-fired boiler waterwall was corrosion by sulfur contained in the unburned carbon. And the secondary mechanism was $H_2S$ gas corrosion at localized reducing atmosphere. It is required to decrease the air-stage combustion operation in order to mitigate the waterwall tube corrosion. Also stringent coal pulverization quality control and reinforcing work for corrosion susceptible area such as anti-corrosion coatings is required

The anti-corrosion study on the corrosion-sensitive areas of unpainted weathering steel bridges with closed box girder(II) (밀폐 박스거더형 무도장 내후성강 교량의 부식취약부에 대한 방식대책 연구(II))

  • Song, Chang-Young;Lee, Eui-Ho;Lee, Jea-Hyun;Park, Hyun-Chul;Choi, Jae-Suk;Noh, Young-Tae
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • This study is the second stage of developing the corrosion control technical manual about unpainted weathering steel bridge with closed box girder structures. This paper contains selection of corrosive sealant to apply into crevice of upper flange, injecting test of sealant at mock-up equipment with various condition, evaluation of experiment result. Through the experiment of injection of sealants into crevice of mock-up equipment, it is proved that the tar sealant injecting corrosion control method is useful to protect corrosion at box girder upper flange corroded by remaning rain water with calcium chloride.

Corrosion Inhibition of Steel for Water Pipe Line by Adding a Non-Toxic Spearmint Extracts

  • Farooq, Hina;Kim, Jae-Yeon;Lee, Do-Il;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.122-128
    • /
    • 2017
  • Purpose: To investigate the corrosion inhibition effect of the natural spearmint oil extracted from Mentha Spicata plants on 304 stainless steel in different concentrations of hydrochloric acid. Method: The anti-corrosive effect has been investigated in 0.5m, 1m and 2m HCl using weight loss test and electrochemical polarization method as a function of inhibitor concentration and immersion time in strong chloride environment. The surface morphology was analysed by scanning electron microscopy (SEM). Results: The corrosion rate of steel decreased and inhibition efficiency increased with the increase in inhibitor concentration. Microscopic evaluation revealed significant corrosion in the specimens immersed in uninhibited conditions. Potentiodynamic polarization test results showed an increase in corrosion potential (Ecorr) and decrease in corrosion current (icorr) value with increasing concentration of inhibitor. Conclusions: Immersion of steel in higher concentration of inhibitor resulted in greater surface coverage value and hence lesser number of surface corrosion sites/pores were formed; thus lowering the corrosion rate.

Surface Quality and Corrosion of Additively Manufactured STS316L Treated by Ultrasonic Nanocrystal Surface Modification (적층제조된 스테인레스 316L에 대한 초음파나노표면개질에 따른 표면특성 및 부식성에 관한 연구)

  • Kim, Jun-Ho;Oh, Yeong-Taek;Park, Han-Byeol;Lee, Dong-Ho;Kim, Hwa-Jeong;Kim, Ui-Jun;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.94-103
    • /
    • 2020
  • This study investigated the effects of ultrasonic nanocrystal surface modification (UNSM) on the deteriorated surface of AISI SUS316L additively manufactured (AM) using the powder bed fusion (PBF) technique. Specifically, the effects of UNSM conditions on surface topology, hardness, and anti-corrosion were examined. Before UNSM treatment, the stainless steel 316L powder was processed via the PBF machine to prepare a substrate. We observed surface changes due to UNSM treatments in PBF SUS316L substrates and examined the correlation between topology changes, roughness, hardness, and anti-corrosion. After UNSM treatment, the coarse as-built surface was refined, and a regular micro-profile was implemented. Compared to the non-treated PBF sample, the waviness and roughness of the surfaces after UNSM treatment decreased by up to 56.0% and 94.5%, respectively, and decreased further as the interval decreased. The hardness improved by up to 63.0% at a maximum depth of 500 ㎛ from top surface by the UNSM treatment. The results of the corrosion test showed that the corrosion resistance of the UNSM specimens was moderately improved compared to that of the untreated surface. This study confirmed that UNSM is an effective post-processing technique for additively manufactured parts.